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The problem

Nonconvex distributed optimization problem:

reRd

win | f(2) =3 fi(a)|
1=1 _

e n — number of clients
e fi(x) —smooth local loss function, i.e., |V fi(z) — Vfi(y)|| < L;||z — y]| for all
z,y € RY = inf  pa f(z) > —00

Goal: find 2 such that E[||Vf(2)|]7] < &

Compressed learning

Contractive compressor: a (possibly randomized) map C : R? — RY is
called a contractive compressor, if there exists a constant 0 < a < 1:

E[|C() -] <1 —a)fz, VzeR"
Top-k (greedy) sparsification operator is defined via

d
C(I) = Z 33(2')6(2-),
1=d—k+1

where ’x(1)| < ‘x(z)} < - < |x(d)’ . Then o = g.

Error feedback with contractive compressor

> Motivation for error feedback — the method of type

1 n
t+1 t t
=g == gl
n <
1=1

g; = C (Vfi(a"))
e may diverge [1] for a biased compressor C and n > 1.
¢ Original error feedback (EF) [1]
e bounded gradients ||V fi(x)|| < G e not optimal complexity O (/=)
¢ Modern error feedback (EF21) 2]

e simple analysis e optimal complexity O (1/s2) e better in practice

Lazy aggregation

& Motivation for LAG [3]: reduce communication by sending gradients only when
they change significantly:

= {vfi (@) i g = V@) > CIVE @) - Vi)

g otherwise,

where ¢ > 0 is the trigger.

e not optimal complexity O (1/e?) e difficult analysis

References

1] Seide, F., Fu, H., Droppo, J., Li, G., Yu, D. 1-bit stochastic gradient descent
and its application to data-parallel distributed training of speech DNNs. Inter-
speech, 2014.

2] P. Richtéarik, 1. Sokolov, I. Fatkhullin. EF21: A new, simpler, theoretically
better, and practically faster error feedback. NeurIPS'21, arXiv:2106.05203,
2021.

3] Chen, T., Giannakis, G., Sun, T., Yin, W. LAG: Lazily aggregated gradient for
communication-efficient distributed learning. NeurIPS’18.

4] Gorbunov, E., Burlachenko, K. P., Li, Z., and Richtarik, P. MARINA: Faster
non-convex distributed learning with compression. ICML’21

5] Sun, J., Chen, T., Giannakis, G., and Yang, Z. Communication-efficient dis-
tributed learning via lazily aggregated quantized gradients. NeurIPS’19.

6] Ghadikolaei, H. S., Stich, S., and Jaggi, M. LENA: Communication-efficient
distributed learning with self- triggered gradient uploads. AISTATS21

7] Szlendak R, Tyurin A, Richtarik P. Permutation compressors for provably faster
distributed nonconvex optimization. arXiv preprint arXiv:2110.03300, 2021

3PC: Three Point Compressors for Communication-Efficient Distributed Training

and a Better Theory for Lazy Aggregation

Peter Richtarik!  Igor Sokolov !

IKAUST

llyas Fatkhulin 2

Elnur Gasanov ! Zhize Li! Eduard Gorbunov 3

°ETH Zurich SMIPT

Table 1:Summary of the methods fitting our general 3PC framework. For each method we give the formula for the 3PC compressor Cy, (), its parameters A, B, and the ratio

B/ A appearing in the convergence rate. Notation: o = parameter of the contractive compressor C, w = parameter of the unbiased compressor Q, A, By = parameters of

three points compressor C}Ly(x) a=1—(1—a1)(l — ), where ay, ay are the parameters of the contractive compressors Cy, Co, respectively.

Variant of 3PC | Citation Chylz) = A B £
EF21 2] h+Clz —h) Il —V1-a — O ()
(z, i |z — R > Cllz —yl?
x| @ [ o= hlP > Gl = P 1 C o
\h, otherwise
‘hClz—h), i lz— |2 > Clla — ] . o
LA NEW h, otherwise t=vl-a s {1 vi-a’ C} O (max {?’ a )
3PCvl NEW y+Clx —y) 1 1 -« l—a
3PCv2 NEW b+C(x—0b), where b=h+ Q(x — y) o (1 — a)w (1—a)w
3PCv3 | NEW b+ C (x — b), where b= C}. (x) l-(1-a)(1-4) (1-a)B o
3PCv4 NEW b+ Cy(x —b), where b = h + Co(x — h) 1 —+v1—« 1_1_15‘_& O (157—25‘
z, W.-p. P (1-p)(1-a) ((1—p><1—@>)
3PCvbh NEW 1 —+/1— O >
! <\h—|—C($—y), w.p. 1—7p b I=v1=p p
(1—p)w (I—p)w
MARINA 4] N/A p . m

Main contribution

We propose Three Point Compressor (3PC) — a general concept unifying
contractive compression and lazy aggregation.

1. Three point compressor (3PC)

3PC. We say that a (possibly randomized) map

Cry(z): R" x R" x R? — R
he ye re

is a three point compressor (3PC) if there exist constants 0 < A < 1 and B > 0
such that the following relation holds for all z,y, h € R?

E [|[Chy(z) = zlI'] < @ =A) A —yl"+ Bl -yl (1)

The vectors y € R? and h € R? are parameters defining the compressor.

2. Distributed compressed GD with 3PC

Algorithm 1.

1= gt — ~g

o Workers apply 3PC g™ = Cyi g (Vfi(2'")) and send the result to the
server

e Server broadcasts ¢! to the workers: workers compute x*

n
Z gIH—l
1=1 Z

S|

e Scrver aggregates received messages ¢/t =

3. Special cases

& GD: if we do not employ any compression, i.e., if we set
Chy(x) = 2,
then Algorithm 1 reduces to vanilla GD and (1) holds with B =1 and A = 0.
O EF21 [2]: let C : RY — RY be a contractive compressor and
Chylz) =h+C(x—h).
Then, Algorithm 1 reduces to EF21 and (1) holds with A :=1— (1 —a)(1+s)
and B := (1 —a) (1 + s~1), where s > 0 satisfies (1 — ) (1 +5) < 1.

O LAG [3] and CLAG: let C : R? — R? be a contractive compressor. Choose a
trigger ¢ > 0, and define

h+Clz—h), if ||z —h|]*> (|lz — vyl
o (o) m { (@ =h), it [lo = hl* > Clle ~ ]

h, otherwise,

Then, Algorithm 1 reduces to CLAG and (1) holds with A :=1— (1 —a)(1+s)
and B := max {(1 — a)(1+s1),(}, where s > Osatisfies (1—a) (1 +s) < 1.
If C(x) =0 (a = 1), we recover LAG.

& In Table 1 we summarize several further 3PC compressors and the new algo-
rithms they lead to (e.g., 3PCvl — 3PCv5).

4. Main result

Assumption 1. The functions fi, ..., f, : R? — R are differentiable. More-
over, there exists f™ € R such that f(z) > f™ for all z € RY.

Assumption 2. The function f : R? — R is L_-smooth, i.e., it is differentiable
and its gradient satisfies

IV f(@) = V)l < Loflz -yl Va,y € R

Assumption 3. There is a constant L, > 0 such that +> " [|[Vfi(z) —
Viwl? < L2z — y||? for all z,y € R% Let L, be the smallest such number.
It is easy to see that L_ < L.

Let Assumptions 1-3 hold. Assume that the stepsize v of the 3PC method
satisfies 0 < v < V/my, where My = L_ + L,+/B/A. Then, for any T > 1 we
have

R 2AY  E[G
B IV < 20+ S

where 27 is sampled uniformly at random from the points {z%, !, ... 271}

produced by 3PC , AY := f(2%) — f™ and G* .= 13" ||g0 — V fi(z")||".

Corollary 1

M .

1

L_+Li\/B/a
Then, to achieve E |||V f(27)[]?] < &? for some € > 0, the 3PC method

requires
AL+ Lo /Pa) g

T=0 = + A2

Let the assumptions of Theorem 1 hold and choose the stepsize v =

iterations (=communication rounds).

$ Initialization with ¢ = V f;(2") implies G = 0 and

A" (L + Ly M)

c2

T=0

¢ The smaller 5/4, the better
& We also have the results under the Polyak-t.ojasiewicz (PL) condition

5. Comparison of methods with lazy aggregation

Table 2:Comparison of existing and proposed theoretically-supported methods employing
lazy aggregation. In the rates for our methods, M; = L_ + Ly +/B/a and M, =

max {L_ + L+\/@, A/Q,u}.

Method Simple Uses a contractive Strongly convex rate Pt nonconvex rate General nonconvex rate
method? compressor C?

LAG [3] v X linear X X

LAQ (5] X v linear X X

LENA [6] v v O(GY/T?1?) O(G*/T?1i?) O(G*3)T?%/3)

LAG (NEW) v X O(exp(=Tu/Ms))  O(exp(—Tu/M,)) O(M,/T)

cLAG (NEW) v v Olexp(=Tu/Ms))  O(exp(—Tu/Ms)) O(M,/T)
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6. Experiments

¢» Training of the autoencoder model
1 )
min D FE)=— DFa; — a; :
e, [ /D E) = 3 H

where a; are flattened representations of images with dy = 784, D and E are
learnable parameters.

MNIST
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Figure 1:Number of clients n = 100, compression level K = 251.

> Logistic regression problem with a non-convex regularizer

i ) ) _
1 T
min | f(z) := - g log(1 4 e ¥4 %) 4 X g
i=1 j=1

2
L
1+:1;§

reRd

where a; € R?, y; € {—1,1} are the training data and labels, and A\ = 0.1.

EF21 jcnnl.bz2
—| 3008 3872 3883 2867 4880 4872 15000
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Figure 2:Number of clients n = 20. The red-contoured cell indicates the experiment with the

smallest communication cost.

{ Synthetic quadratic problem

. I (1 ¢ .
;rel%é}l fi(z) _EZ (ix Ax—=x bZ) :

1=1

where A; € R™4 b, € RY and A; = AZT is the training data that belongs
to the device/worker 4. In all experiments, we fix d = 1000. We refer to the
quantity L5 > 0 by the name Hessian variance [7], which is defined as

LS IVE@) - VAW - IVF @) = VI < Bl -yl ey e R

L.=00,L_=1.0 L.=658,L_=0.77
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Figure 3:Number of clients n = 100.



