جامعة الملك عبدالله للعلوم والتقنية King Abdullah University of Science and Technology

EF21-P and Friends: Improved Theoretical Communication Complexity for Distributed Optimization with Bidirectional Compression

Kaja Gruntkowska

Alexander Tyurin KAUST, Saudi Arabia

Peter Richtárik

ences	[1] Konstantin Mishchenko, Eduard Gorbunov, Martin Takáč, Peter Richtárik Distributed learning with compressed gradient differences
	arXiv:1901.09269

Method	# Communication Rounds
EF (No server-to-worker compression!) (Seide et al., 2014)	$\Omega\left(\left(1+\omega_{\mathrm{w}} ight)rac{L_{\mathrm{max}}}{\mu} ight)$
DIANA (No server-to-worker compression!) (Mishchenko et al., 2019)	$\left(1+rac{\omega_{\mathrm{w}}}{n} ight)rac{L_{\mathrm{max}}}{\mu}+\omega_{\mathrm{w}}$
Dore, Artemis (Liu et al., 2020) (Philippenko & Dieuleveut, 2020)	$\Omega\left(rac{\omega_{ m s}\omega_{ m w}}{n}rac{L_{ m max}}{\mu} ight)$
MCM (Philippenko & Dieuleveut, 2021)	$\Omega\left(\left(\omega_{ m s}^{3/2}+rac{\omega_{ m s}\omega_{ m w}^{1/2}}{\sqrt{n}}+rac{\omega_{ m w}}{n} ight)rac{L_{ m max}}{\mu} ight)$
EF21-P + DIANA (new)	$(1+\omega_{ m s})rac{L}{\mu}+rac{\omega_{ m w}}{n}rac{L_{ m max}}{\mu}+\omega_{ m w}$

мсм (Philippenko & Dieuleveut, 2021)	$\frac{\omega_{\rm s}^{3/2}}{\varepsilon} + \frac{\omega_{\rm s}\omega_{\rm w}^{1/2}}{\sqrt{n}\varepsilon} + \frac{\omega_{\rm w}}{n\varepsilon}$
CD-Adam (Wang et al., 2022)	$\frac{\sqrt{d}\max\{\omega_{\rm s},\omega_{\rm w}\}^4}{\varepsilon^2}$
EF21-BC (Fatkhullin et al., 2021)	$\frac{\omega_{\rm w}\omega_{\rm s}}{\varepsilon}$
EF21-P + DCGD (new)	$rac{\omega_{ m w}}{narepsilon^2}+rac{\omega_{ m s}}{arepsilon}$
EF21-P + DCGD (new)	$\frac{D\omega_{w}}{n\varepsilon} + \frac{\omega_{s}}{\varepsilon}$ (strong-growth assumption)