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The Problem and Assumptions

We want to solve the finite-sum optimization problem

min{f(x) ISl

rERA

e Problem (1) has many applications in machine learning,
data science and engineering;

e We focus on the regime when n is very large. This is
typically the case in big data settings (e.g., massively

distributed and federated learning).
Assumptions:
e f is u-strongly convex;
e all f; have Lipschitz continuous Hessians with respect to
spectral (L,), Frobenius (Lr) and infinity (L) norms;
e 1* is the solution for Problem (1).

Main goal

Our goal is to develop a communication efficient Newton-type
method for federated learning.

Newton’s method

~1
Newton’s step: 2™ = 2% — (VQf(a:k)) V f(xh).
Pros: e Fast local quadratic convergence rate
e Rate is independent on the condition number

Cons: @ Requires O(d?*) floats to be communicated by each
worker to the server, where d is typically very large

Newton Star

Newton Star step: z"t! = 2F — (V2f(z*)) " V f(zF).
Pros: e Fast local quadratic convergence rate
e Rate is independent on the condition number
e Requires O(d) floats to be communicated by each
worker;
Cons: e Cannot be implemented in practice.

Newton Zero

Newton Zero step: zF7 = 2% — (V2f(2")) " V f(z").
Pros: e Fast local linear convergence rate
e Rate is independent on the condition number
e Requires O(d) floats to be communicated by each
worker;

Newton Triangle

FedNL and its four extensions interpolates between these three

special Newton-type method — Newton (N), Newton Star (NS)
and Newton Zero (NO).
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How to address the communication bottleneck?
e Compressed communication
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Compression operators

Unbiased Compressors. By B(w) we denote the class of (possi-
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In FedNL we maintain a sequence of matrices HY € R for all
v = 1,...,n throughout the iterations & > 0, with the goal of

learning H;(x*) for all i:

H' — Vfi(z*) as k — +oo.

Using HY ~ V2f;(z*), we can estimate the Hessian V2 f(z*) via

VQfZ(CL’*) ~ Hk = — Z H,]f
s

FedNL: Extensions

FedNL-PP: FedNL with partial participation;

FedNL-LS: FedNL with globalization via Line Search;
FedNL-CR: FedNL with globalization via Cubic Regularization [2];
FedNL-BC: FedNL with Bidirectional Compression.

bly randomized) unbiased compression operators C : R4*¢ — R4
with variance parameter omega > 0 satistying

EC(M)=M, E|CM)—-M|?<w|M|7 M e R

Contractive Compressors. By C(J) we denote the class of
deterministic contractive compression operators C : R™? — Rxd
with contraction parameter ¢ € |0, 1] satisfying

[CM)[lr < [M]lr, [[C(M)=M][f < (1-8)M[[, ¥ M € R

Learning mechanism

Learning the matrices: the idea

We design a learning rule for matrices HY via the DIANA
trick 1] :

H "' = Hf + o} (V*fi(z") - HY) ,

where o > 0 is a learning rate, and CF is a freshly sampled
compressor by node 7 at iteration k.

Main features of a family of FedNL methods important for Federated Learning

supports heterogeneous data setting

uses adaptive stepsizes
supports unbiased Hessian compression (e.g., Rand-K)
fast local rate: independent of the condition number

e has global convergence guarantees via line search
e supports smart uplink gradient compression at the devices e supports smart downlink model compression by the server

Table: Convergence results for a family of FedNL methods.
Rate
Method Convergence independent on
the condition
result | type rate number

NO r. < 2—1,57’0 oca linear v
NS ree1 < cri local quadratic v
re < 2_116740 oca linear v
FedNL OF < DY loca linear v
rie1 < c@Fr; local superlinear v
WP < "W loca inear v
FedNL-PP | &5 < 0*®)  loca inear v
rie1 < W, loca Inear v
FedNL-LS = A, < 6*A, globa inear X
Ar < c/k global sublinear X
A < A, globa linear X
FedNL-CR | ®F < 0*®Y  loca linear v
rie1 < c@Fr;  local superlinear v
FedNL-BC | ®% < 0*®)  loca linear v

I Refer to the precise statements of the theorems in [3] for the
exact values.

e applies to general finite-sum problems

e privacy is enhanced (training data is not sent to the server)
e supports contractive Hessian compression (e.g., Top-K)
e supports partial participation

e has global convergence guarantees via cubic regularization

Algorithm 1: FedNL (Federated Newton Learn)
Parameters: Hessian learning rate o > 0; compression

operators {Cf,...,CF

Initialization: 2’ ¢ R% HY, ..
0._ 1 0

H' =5 H;

for each devicei =1,...,n in parallel do

Get 2" from the server and compute local gradient V f;(x")

and local Hessian V2 f;(z")

Send V f;(z¥), SF:=CHV fi(2") — HY) and
¥ = ||HE — V2fi(2")||F to the server

Update local Hessian shift to H "' = HY + o/S¥
end

on server

Get Vfi(2"*), SF and I¥ from each node i € [n)]

V(") = S Vi(ah), 8% =230, 8]
F =15 1k, HE = HY + oSh

71
Option 1: 2t = o¥ — Hk} V f(z")
Ly

., H? € R and

: —1
Option 2: x*™! = 2% — |H* + lkI} V f(z")

Experiments
1071 1071
—~ 1077 —~ 107%;
& 1075 & 1075
=~ 107 = 107
| 1071 —*— FedNL, Rank-R,R=1 | U —*— FedNL, Rank-R,R=1
1077 - no 1079 - o
310—11: —< ADIANA, RD, s=vd 510—11: —< ADIANA, RD, s=vd
s _13] —»— DIANA, RD, s=Vd s _13] —»— DIANA,RD, s=Vd
101:—A—GD 101:—A—GD
1071 95" 98" il Hld HiIT 920 523 26 10~ 521' Tg5 99" T HI3 T 9l7 T H21 T 55
communicated bits per node communicated bits per node
(a) a9a, A = 1079 (b) phishing, A = 10~
10—1_ 10_1_
— 1073 _ 107
* 1 * —5 ]
5/ 10—5_ 5/ 10 ]
=107 =107
1070 o 1077
8 l & —11 |
=101 =107
h _13] —*— FedNL, Rank-R, R=1 K10—13. —*— FedNL, Rank-R, k=1
1071 4~ binco (5] ¥ DINGO
10~

]‘0_152].I I2I4I I2I7I I210I I213I I216I I219I I222I

communicated bits per node

(c) phishing, A = 1077

2

13 215 ' 217 ' 219 ' 221 ' 223 ' 225
communicated bits per node

(d) w7a, A =107

101_ A 101_;
. 10_; 10—1_
* Y :\ -3
8 10_5' —&— NO-LS 3 ]‘0_5_
= 10777 . FedNL-LS, Rank-R. R=1 5= 10777 =& No-Ls
11077 - e, momerii- T 0T s ey
% 1079 —% ADIANARD, s=Vd 2> 1077 —« ADIANA RD, 5= V3
=101 : glANA, RD, s=Vd 210111 > Diana, RD, s~ v
] b _
107134 GD-LS 1013 = EB-LS .
-1 , , , , -5, R B S .| .
10 92 95 o8 §IT 511 517 530 523 526 107 51 g5 50 T o137 T Hal 528 529
communicated bits per node communicated bits per node
(e) a9a, A = 107" (f) ata, A\ =107
10 10"
1071 107
* ~3] 103!
) 10_5' S 10—5:
= 1077 = 1071
1077 | 10_7:
21079 £ 1077
— 1n—11] —&— FedNL-LS, Rank-R,R=1 - 1Nn—11. edNL-LS, Rank-R, R =
%10_ | —¥— FedNL-CR, Rank-R,R=1 "\10_ ] : Eejﬂt_ti,iankk_ﬁ,i:ﬁ
1077 _o— pbinGo 1071 —— DINGO
10_1524' 97T 9l0" 913" 9l6T 9197 52’ 107" ‘97 HI0 93 HI6 519 527 525 58

communicated bits per node

(¢) phishing, A = 1077

communicated bits per node

(h) ala, A =10~*

Figure 1:First row: Local comparison of FedNL and NO with ADIANA,
DIANA, and GD in terms of communication complexity. Second
row: Local comparison of FedNL with DINGO (second row) in terms
of communication complexity. Third row: Global comparison of
FedNL-LS, NO-LS, and FedNL-CR with ADIANA, DIANA, GD, and
GD-LS in terms of communication complexity. Fourth row: Global
comparison of FedNL-LS and FedNL-CR with DINGO in terms of

communication complexity.
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