

FedNL: Making Newton-Type Methods Applicable to Federated Learning

Mher Safaryan¹ Rustem Islamov^{1, 2} Xun Qian¹ Peter Richtárik¹

¹KAUST ²MIPT

The Problem and Assumptions

We want to solve the finite-sum optimization problem

$$\min_{x \in \mathbb{R}^d} \left\{ f(x) := \frac{1}{n} \sum_{i=1}^n f_i(x) \right\}. \tag{1}$$

- Problem (1) has many applications in machine learning, data science and engineering;
- We focus on the regime when n is very large. This is typically the case in big data settings (e.g., massively distributed and federated learning).

Assumptions:

- f is μ -strongly convex;
- all f_i have Lipschitz continuous Hessians with respect to spectral (L_*) , Frobenius $(L_{\rm F})$ and infinity (L_{∞}) norms;
- x^* is the solution for Problem (1).

Main goal

Our goal is to develop a communication efficient Newton-type method for federated learning.

Newton's method

Newton's step: $x^{k+1} = x^k - \left(\nabla^2 f(x^k)\right)^{-1} \nabla f(x^k)$.

Pros: • Fast local quadratic convergence rate

• Rate is independent on the condition number

Cons: • Requires $\mathcal{O}(d^2)$ floats to be communicated by each worker to the server, where d is typically very large

Newton Star

Newton Star step: $x^{k+1} = x^k - (\nabla^2 f(x^*))^{-1} \nabla f(x^k)$.

Pros: • Fast **local quadratic** convergence rate

- Rate is independent on the condition number
- Requires $\mathcal{O}(d)$ floats to be communicated by each worker;

Cons: • Cannot be implemented in practice.

Newton Zero

Newton Zero step: $x^{k+1} = x^k - (\nabla^2 f(x^0))^{-1} \nabla f(x^k)$.

Pros: • Fast **local linear** convergence rate

- Rate is independent on the condition number
- Requires $\mathcal{O}(d)$ floats to be communicated by each worker;

Newton Triangle

FedNL and its four extensions interpolates between these three special Newton-type method — Newton (N), Newton Star (NS) and Newton Zero (N0).

FedNL

How to address the communication bottleneck?

Compressed communication

In **FedNL** we maintain a sequence of matrices $\mathbf{H}_i^k \in \mathbb{R}^{d \times d}$, for all $i = 1, \ldots, n$ throughout the iterations $k \geq 0$, with the goal of learning $\mathbf{H}_i(x^*)$ for all i:

$$\mathbf{H}_i^k \to \nabla^2 f_i(x^*)$$
 as $k \to +\infty$.

Using $\mathbf{H}_i^k \approx \nabla^2 f_i(x^*)$, we can estimate the Hessian $\nabla^2 f(x^*)$ via

$$abla^2 f_i(x^*) pprox \mathbf{H}^k := rac{1}{n} \sum_{i=1}^n \mathbf{H}_i^k.$$

FedNL: Extensions

- FedNL-PP: FedNL with partial participation;
- FedNL-LS: FedNL with globalization via Line Search;
- **FedNL-CR:** FedNL with globalization via Cubic Regularization [2];
- FedNL-BC: FedNL with Bidirectional Compression.

Compression operators

Unbiased Compressors. By $\mathbb{B}(\omega)$ we denote the class of (possibly randomized) unbiased compression operators $\mathcal{C}: \mathbb{R}^{d \times d} \to \mathbb{R}^{d \times d}$ with variance parameter $omega \geq 0$ satisfying

$$\mathbb{E}C(M) = \mathbf{M}, \quad \mathbb{E}\|\mathcal{C}(\mathbf{M}) - \mathbf{M}\|_{\mathrm{F}}^2 \le \omega \|\mathbf{M}\|_{\mathrm{F}}^2 \quad \mathbf{M} \in \mathbb{R}^{d \times d}.$$

Contractive Compressors. By $\mathbb{C}(\delta)$ we denote the class of deterministic contractive compression operators $\mathcal{C}: \mathbb{R}^{d \times d} \to \mathbb{R}^{d \times d}$ with contraction parameter $\delta \in [0,1]$ satisfying

 $\|\mathcal{C}(\mathbf{M})\|_{\mathrm{F}} \leq \|\mathbf{M}\|_{\mathrm{F}}, \|\mathcal{C}(\mathbf{M}) - \mathbf{M}\|_{\mathrm{F}}^2 \leq (1-\delta)\|\mathbf{M}\|_{\mathrm{F}}^2, \forall \mathbf{M} \in \mathbb{R}^{d \times d}.$

Learning mechanism

Learning the matrices: the idea

We design a learning rule for matrices \mathbf{H}_i^k via the **DIANA** trick [1]:

$$\mathbf{H}_{i}^{k+1} = \mathbf{H}_{i}^{k} + \alpha C_{i}^{k} \left(\nabla^{2} f_{i}(x^{k}) - \mathbf{H}_{i}^{k} \right),$$

where $\alpha > 0$ is a learning rate, and \mathcal{C}_i^k is a freshly sampled compressor by node i at iteration k.

Main features of a family of FedNL methods important for Federated Learning

- supports heterogeneous data setting
- uses adaptive stepsizes
- supports **unbiased Hessian compression** (e.g., Rand-K)
- fast local rate: independent of the condition number
- has global convergence guarantees via line search
- applies to general **finite-sum problems**
- privacy is enhanced (training data is not sent to the server)
- supports contractive Hessian compression (e.g., Top-K)
- supports partial participation
- has global convergence guarantees via cubic regularization
- supports smart **uplink gradient compression** at the devices supports smart **downlink model compression** by the server

Table: Convergence results for a family of FedNL methods.

Table. Convergence results for a fairing of Fedive methods.				
				Rate
Method	Convergence			independent on
				the condition
	result †	type	rate	number
N0	$r_k \leq \frac{1}{2^k} r_0$	local	linear	✓
NS	$r_{k+1} \le cr_k^2$	local	quadratic	
	$r_k \le \frac{1}{2^k} r_0$	local	linear	
FedNL	$\Phi_1^k \le \theta^k \Phi_1^0$	local	linear	
	$r_{k+1} \le c\theta^k r_k$	local	superlinear	
	$\mathcal{W}^k \leq \theta^k \mathcal{W}^0$	local	linear	✓
FedNL-PP	$\Phi_2^k \le \theta^k \Phi_2^0$	local	linear	
	$r_{k+1} \leq c\theta^k \mathcal{W}_k$	local	linear	
FedNL-LS	$\Delta_k \le \theta^k \Delta_0$	global	linear	×
	$\Delta_k \le c/k$	•	sublinear	X
	$\Delta_k \le \theta^k \Delta_0$	global	linear	X
FedNL-CR	$\Phi_1^k \le \theta^k \Phi_1^0$	local	linear	
	$r_{k+1} \le c\theta^k r_k$	local	superlinear	✓
FedNL-BC	$\Phi_3^k \leq \theta^k \Phi_3^0$	local	linear	✓

 \dagger Refer to the precise statements of the theorems in [3] for the exact values.

Algorithm 1: FedNL (Federated Newton Learn)

Parameters: Hessian learning rate $\alpha \geq 0$; compression

operators $\{\mathcal{C}_1^k,\ldots,\mathcal{C}_n^k\}$

Initialization: $x^0 \in \mathbb{R}^d$; $\mathbf{H}_1^0, \dots, \mathbf{H}_n^0 \in \mathbb{R}^{d \times d}$ and

 $\mathbf{H}^0 := rac{1}{n} \sum_{i=1}^n \mathbf{H}_i^0$

for each device $i = 1, \ldots, n$ in parallel do

Get x^k from the server and compute local gradient $\nabla f_i(x^k)$

and local Hessian $abla^2 f_i(x^k)$

Send $\nabla f_i(x^k)$, $\mathbf{S}_i^k := \mathcal{C}_i^k(\nabla^2 f_i(x^k) - \mathbf{H}_i^k)$ and

 $l_i^k := \|\mathbf{H}_i^k -
abla^2 f_i(x^k)\|_{\mathrm{F}}$ to the server

Update local Hessian shift to $\mathbf{H}_i^{k+1} = \mathbf{H}_i^k + \alpha \mathbf{S}_i^k$

end

on server

Get $\nabla f_i(x^k)$, \mathbf{S}_i^k and l_i^k from each node $i \in [n]$ $\nabla f(x^k) = \frac{1}{2} \sum_{i=1}^{n} \nabla f_i(x^k)$ $\mathbf{S}^k = \frac{1}{2} \sum_{i=1}^{n} \mathbf{S}_i^k$

 $\nabla f(x^k) = \frac{1}{n} \sum_{i=1}^n \nabla f_i(x^k), \ \mathbf{S}^k = \frac{1}{n} \sum_{i=1}^n \mathbf{S}_i^k$ $l^k = \frac{1}{n} \sum_{i=1}^n l_i^k, \ \mathbf{H}^{k+1} = \mathbf{H}^k + \alpha \mathbf{S}^k$

Option 1: $x^{k+1} = x^k - \left[\mathbf{H}^k\right]_{\mu}^{-1} \nabla f(x^k)$

Option 2: $x^{k+1} = x^k - \left[\mathbf{H}^k + l^k \mathbf{I}\right]^{-1} \nabla f(x^k)$

Experiments

Figure 1: **First row:** Local comparison of FedNL and N0 with ADIANA, DIANA, and GD in terms of communication complexity. **Second row:** Local comparison of FedNL with DINGO (second row) in terms of communication complexity. **Third row:** Global comparison of FedNL-LS, N0-LS, and FedNL-CR with ADIANA, DIANA, GD, and GD-LS in terms of communication complexity. **Fourth row:** Global comparison of FedNL-LS and FedNL-CR with DINGO in terms of communication complexity.

References

- [1] Konstantin Mishchenko, Eduard Gorbunov, Martin Takáč, and Peter Richtárik. Distributed learning with compressed gradient differences. arXiv preprint arXiv:1901.09269, 2019.
- [2] Yurii Nesterov and Boris T. Polyak. Cubic regularization of Newton method and its global performance. *Mathematical Programming*, 108(1):177-205,2006.
- [3] Mher Safaryan, Rustem Islamov, Xun Qian, and Peter Richtárik. FedNL: Making Newton-Type Methods Applicable to Federated Learning. arXiv preprint arXiv:2106.02969, 2021.