
FedNL: Making Newton-Type Methods Applicable to Federated Learning
Mher Safaryan1 Rustem Islamov1, 2 Xun Qian1 Peter Richtárik1

1KAUST 2MIPT

The Problem and Assumptions

We want to solve the finite-sum optimization problem

min
x∈Rd

{
f (x) := 1

n

n∑
i=1

fi(x)
}

. (1)

• Problem (1) has many applications in machine learning,
data science and engineering;

• We focus on the regime when n is very large. This is
typically the case in big data settings (e.g., massively
distributed and federated learning).

Assumptions:
• f is µ-strongly convex;
• all fi have Lipschitz continuous Hessians with respect to

spectral (L∗), Frobenius (LF) and infinity (L∞) norms;
• x∗ is the solution for Problem (1).

Main goal

Our goal is to develop a communication efficient Newton-type
method for federated learning.

Newton’s method

Newton’s step: xk+1 = xk −
(
∇2f (xk)

)−1
∇f (xk).

Pros: • Fast local quadratic convergence rate
• Rate is independent on the condition number

Cons: • Requires O(d2) floats to be communicated by each
worker to the server, where d is typically very large

Newton Star

Newton Star step: xk+1 = xk − (∇2f (x∗))−1 ∇f (xk).
Pros: • Fast local quadratic convergence rate

• Rate is independent on the condition number
• Requires O(d) floats to be communicated by each

worker;
Cons: • Cannot be implemented in practice.

Newton Zero

Newton Zero step: xk+1 = xk − (∇2f (x0))−1 ∇f (xk).
Pros: • Fast local linear convergence rate

• Rate is independent on the condition number
• Requires O(d) floats to be communicated by each

worker;

Newton Triangle

FedNL and its four extensions interpolates between these three
special Newton-type method — Newton (N), Newton Star (NS)
and Newton Zero (N0).

FedNL

How to address the communication bottleneck?
• Compressed communication

In FedNL we maintain a sequence of matrices Hk
i ∈ Rd×d, for all

i = 1, . . . , n throughout the iterations k ≥ 0, with the goal of
learning Hi(x∗) for all i:

Hk
i → ∇2fi(x∗) as k → +∞.

Using Hk
i ≈ ∇2fi(x∗), we can estimate the Hessian ∇2f (x∗) via

∇2fi(x∗) ≈ Hk := 1
n

n∑
i=1

Hk
i .

FedNL: Extensions

• FedNL-PP: FedNL with partial participation;
• FedNL-LS: FedNL with globalization via Line Search;
• FedNL-CR: FedNL with globalization via Cubic Regularization [2];
• FedNL-BC: FedNL with Bidirectional Compression.

Compression operators

Unbiased Compressors. By B(ω) we denote the class of (possi-
bly randomized) unbiased compression operators C : Rd×d → Rd×d

with variance parameter omega ≥ 0 satisfying
EC(M) = M, E∥C(M) − M∥2

F ≤ ω∥M∥2
F M ∈ Rd×d.

Contractive Compressors. By C(δ) we denote the class of
deterministic contractive compression operators C : Rd×d → Rd×d

with contraction parameter δ ∈ [0, 1] satisfying
∥C(M)∥F ≤ ∥M∥F, ∥C(M)−M∥2

F ≤ (1−δ)∥M∥2
F, ∀ M ∈ Rd×d.

Learning mechanism

Learning the matrices: the idea

We design a learning rule for matrices Hk
i via the DIANA

trick [1] :
Hk+1

i = Hk
i + αCk

i

(
∇2fi(xk) − Hk

i

)
,

where α > 0 is a learning rate, and Ck
i is a freshly sampled

compressor by node i at iteration k.

Main features of a family of FedNL methods important for Federated Learning

• supports heterogeneous data setting • applies to general finite-sum problems
• uses adaptive stepsizes • privacy is enhanced (training data is not sent to the server)
• supports unbiased Hessian compression (e.g., Rand-K) • supports contractive Hessian compression (e.g., Top-K)
• fast local rate: independent of the condition number • supports partial participation
• has global convergence guarantees via line search • has global convergence guarantees via cubic regularization
• supports smart uplink gradient compression at the devices • supports smart downlink model compression by the server

Table: Convergence results for a family of FedNL methods.
Rate

Method Convergence independent on
the condition

result † type rate number
N0 rk ≤ 1

2kr0 local linear ✓

NS rk+1 ≤ cr2
k local quadratic ✓

FedNL
rk ≤ 1

2kr0 local linear ✓

Φk
1 ≤ θkΦ0

1 local linear ✓

rk+1 ≤ cθkrk local superlinear ✓

Wk ≤ θkW0 local linear ✓

FedNL-PP Φk
2 ≤ θkΦ0

2 local linear ✓

rk+1 ≤ cθkWk local linear ✓

FedNL-LS ∆k ≤ θk∆0 global linear ✗

FedNL-CR

∆k ≤ c/k global sublinear ✗

∆k ≤ θk∆0 global linear ✗

Φk
1 ≤ θkΦ0

1 local linear ✓

rk+1 ≤ cθkrk local superlinear ✓

FedNL-BC Φk
3 ≤ θkΦ0

3 local linear ✓
† Refer to the precise statements of the theorems in [3] for the

exact values.

Algorithm 1: FedNL (Federated Newton Learn)
Parameters: Hessian learning rate α ≥ 0; compression
operators {Ck

1 , . . . , Ck
n}

Initialization: x0 ∈ Rd; H0
1, . . . , H0

n ∈ Rd×d and
H0 := 1

n

∑n
i=1 H0

i

for each device i = 1, . . . , n in parallel do
Get xk from the server and compute local gradient ∇fi(xk)
and local Hessian ∇2fi(xk)
Send ∇fi(xk), Sk

i := Ck
i (∇2fi(xk) − Hk

i ) and
lki := ∥Hk

i − ∇2fi(xk)∥F to the server
Update local Hessian shift to Hk+1

i = Hk
i + αSk

i

end
on server

Get ∇fi(xk), Sk
i and lki from each node i ∈ [n]

∇f (xk) = 1
n

∑n
i=1 ∇fi(xk), Sk = 1

n

∑n
i=1 Sk

i

lk = 1
n

∑n
i=1 lki , Hk+1 = Hk + αSk

Option 1: xk+1 = xk −
[
Hk

]−1

µ
∇f (xk)

Option 2: xk+1 = xk −
[
Hk + lkI

]−1
∇f (xk)

Experiments

25 28 211 214 217 220 223 226

communicated bits per node

10−1

10−3

10−5

10−7

10−9

10−11

10−13

10−15

f(
x
k
)
−
f(
x
∗
)

FedNL, Rank-R,R= 1

N0
ADIANA, RD, s=

√
d

DIANA, RD, s=
√
d

GD

21 25 29 213 217 221 225

communicated bits per node

10−1

10−3

10−5

10−7

10−9

10−11

10−13

10−15

f(
x
k
)
−
f(
x
∗
)

FedNL, Rank-R,R= 1

N0
ADIANA, RD, s=

√
d

DIANA, RD, s=
√
d

GD

(a) a9a, λ = 10−3 (b) phishing, λ = 10−4

21 24 27 210 213 216 219 222

communicated bits per node

10−1

10−3

10−5

10−7

10−9

10−11

10−13

10−15

f(
x
k
)
−
f(
x
∗
)

FedNL, Rank-R,R= 1

DINGO

213 215 217 219 221 223 225

communicated bits per node

10−1

10−3

10−5

10−7

10−9

10−11

10−13

10−15

f(
x
k
)
−
f(
x
∗
)

FedNL, Rank-R,R= 1

DINGO

(c) phishing, λ = 10−3 (d) w7a, λ = 10−4

22 25 28 211 214 217 220 223 226

communicated bits per node

101

10−1

10−3

10−5

10−7

10−9

10−11

10−13

10−15

f(
x
k
)
−
f(
x
∗
)

N0-LS
FedNL-LS, Rank-R,R= 1

FedNL-CR, Rank-R,R= 1

ADIANA, RD, s=
√
d

DIANA, RD, s=
√
d

GD
GD-LS

21 25 29 213 217 221 225 229

communicated bits per node

101

10−1

10−3

10−5

10−7

10−9

10−11

10−13

10−15

f(
x
k
)
−
f(
x
∗
)

N0-LS
FedNL-LS, Rank-R,R= 1

FedNL-CR, Rank-R,R= 1

ADIANA, RD, s=
√
d

DIANA, RD, s=
√
d

GD
GD-LS

(e) a9a, λ = 10−3 (f) a1a, λ = 10−4

24 27 210 213 216 219 222

communicated bits per node

101

10−1

10−3

10−5

10−7

10−9

10−11

10−13

10−15

f(
x
k
)
−
f(
x
∗
)

FedNL-LS, Rank-R,R= 1

FedNL-CR, Rank-R,R= 1

DINGO

27 210 213 216 219 222 225 228

communicated bits per node

101

10−1

10−3

10−5

10−7

10−9

10−11

10−13

10−15

f(
x
k
)
−
f(
x
∗
)

FedNL-LS, Rank-R,R= 1

FedNL-CR, Rank-R,R= 1

DINGO

(g) phishing, λ = 10−3 (h) a1a, λ = 10−4

Figure 1:First row: Local comparison of FedNL and N0 with ADIANA,
DIANA, and GD in terms of communication complexity. Second
row: Local comparison of FedNL with DINGO (second row) in terms
of communication complexity. Third row: Global comparison of
FedNL-LS, N0-LS, and FedNL-CR with ADIANA, DIANA, GD, and
GD-LS in terms of communication complexity. Fourth row: Global
comparison of FedNL-LS and FedNL-CR with DINGO in terms of
communication complexity.

References

[1] Konstantin Mishchenko, Eduard Gorbunov, Martin Takáč, and
Peter Richtárik. Distributed learning with compressed gradient dif-
ferences. arXiv preprint arXiv:1901.09269, 2019.
[2] Yurii Nesterov and Boris T. Polyak. Cubic regularization of
Newton method and its global performance. Mathematical Pro-
gramming, 108(1) : 177 − 205, 2006.
[3] Mher Safaryan, Rustem Islamov, Xun Qian, and Peter Richtárik.
FedNL: Making Newton-Type Methods Applicable to Federated
Learning. arXiv preprint arXiv:2106.02969, 2021.


