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Abstract

Stein Variational Gradient Descent (SVGD) is an important alternative to the
Langevin-type algorithms for sampling from probability distributions of the form
π(x) ∝ exp(−V (x)). In the existing theory of Langevin-type algorithms andSVGD,
the potential function V is often assumed to be L-smooth. However, this restric-
tive condition excludes a large class of potential functions such as polynomials
of degree greater than 2. Our paper studies the convergence of the SVGD algo-
rithm for distributions with (L0, L1)-smooth potentials. This relaxed smoothness
assumptionwas introducedbyZhang et al. [2019] for the analysis of gradient clip-
ping algorithms. With the help of trajectory-independent auxiliary conditions, we
provide a descent lemma establishing that the algorithm decreases theKL diver-
gence at each iteration and prove a complexity bound for SVGD in the population
limit in terms of the Stein Fisher information.

Introduction

Our goal is to sample from a given target distribution π defined onRdwith a
large value of d. The latter can be formulated as theminimization of the
functionalF(·) := KL(· | π), where

KL(µ | ν) :=


∫
Rd log

(
µ(x)
ν(x)

)
µ(dx), if µ ≪ ν;

+∞, otherwise.

Thus, we need to generate a distribution µ defined onB(Rd) that satisfies

F(µ) = KL(µ | π) ≤ ε. (1)

Important particular case: π has a density (w.r.t. the Lebesguemeasure) given
by

π(θ) ∝ exp(−V (θ)), (2)

with a "potential" V : Rd → R.

Contributions

The main contribution of the paper relies on its weaker set of assumptions, that
allow to treat a larger class of probability distributions which includes densities
with polynomials. We enlarge the class of probability distributions two-fold.

The gradient smoothness assumption is very common in the sampling
literature. Mathematically, it is formulated as ∥∇2V (x)∥op ≤ L, ∀x ∈ Rd,
where∇2V corresponds to the Hessian of V which is assumed to be well
defined onRd. The issues is that this condition imposes at most linear growth
of the potential function. This leaves out the polynomials. We propose the
relaxed smoothness assumption (L0, L1) to overcome this issue.

In [Korba et al., 2020], trajectory dependent conditions are required to
guarantee the convergence of the algorithm. Later, Salim et al. [2021] replaced
that condition with theT1 inequality, but they used the smoothness. In this
paper we propose amore general class of functional inequalitieswhich will
allow to treat the log-polynomial distributions.

Definition of the SVGD

Let the map k : Rd × Rd → R be a reproducing kernel and let H0 be its corre-
spondingRKHS. LetHbe the spaceof thed-dimensionalmaps{(f1, . . . , fd)⊤ | fi ∈
H0, i = 1, . . . , d}. For two vector functions f = (f1, . . . , fd)⊤ and g = (g1, . . . , gd)⊤

fromH, we define the scalar product as

⟨f, g⟩H :=
d∑
i=1

⟨fi, gi⟩H0.

Each iterate of the SVGD is defined as a pushforward measure from the previous
one in a way that it minimizes theKL distance themost:

gµ := arg max
∥ψ∥H≤1

{
− d

dγ
KL
(
(I − γψ)#µ | π

)∣∣∣
γ=0

}
. (3)

The operator ψ will serve us as the direction or the perturbation, while as γ is the
step-size. Liu andWang [2016] have shown that gµ is given by

gµ(·) = −
∫
Rd

[
∇ log π(x)k(x, ·) + ∇xk(x, ·)

]
µ(dx).

SVGD

For a step-size γ > 0 and an initial distributionµ0 ∈ Pp(Rd) the SVGDalgorithm
is defined as

µi+1 := (I − γgµi
)#µi. (SVGD)

We are going to the measure the error of the SVGD using the Stein-Fisher infor-
mation. The Stein-Fisher information between µ and π is defined as

IStein(µ | π) := max
∥ψ∥H≤1

{∫
Rd

(
− V (x)ψ(x) + divψ(x)

)
µ(dx)

}2
.

Assumptions

(Smoothness)TheHessian∇2V ofV = − log π is well-defined and∃L0, L1 ≥ 0 s.t.
for any x ∈ Rd ∥∥∇2V (x)

∥∥
op

≤ L0 + L1∥∇V (x)∥. (L0, L1)

(At most polynomial gradients) For some p > 0, there exists a polynomial with
positive coefficients such that ord(Q) = p and the following inequality is true:∥∥∇V (x)

∥∥ ≤ Q(∥x∥). (poly,Q)

(Bounded kernel) There existsB > 0 such that ∥k(x, ·)∥H0 ≤ B and

∥∇xk(x, ·)∥H =
(

d∑
i=1

∥∂xi
k (x, ·)∥2

H0

)1
2

≤ B, (ker, B)

for all x ∈ Rd.

Complexity result

Under these four assumptions we prove a descent lemma (Theorem 1 in the pa-
per) for the functionalF . The latter result leads to the following complexity bound
(Theorem 2 in the paper).

Theorem

Let assumptions (ker, B), (L0, L1), and (poly,Q) hold and let µ0 = N (0, Id). Then
in order to have

∑n
i=0 IStein(µi | π) ≤ ε it is sufficient to perform n iterations of

the SVGD, where

n = O (ε−1Q(1)3 max(L1, 1)λpBV (pd)p+1), if for every µ ∈ Pp(Rd)

Wp(µ, π) ≤ λBV (KL(µ | π)1/p + (KL(µ | π)/2)1/2p); (i)

n = O
(
ε−1Q(1)p+2

2 max(L1, 1)λ−p
2

T (pd)
(p+1)(p+2)

4

)
, if for every µ ∈ Pp(Rd)

Wp(µ, π) ≤
√

2 KL(µ | π)/λT. (ii)

Remarks

The condition (i) can be expressed as a tail condition (see Corollary 2.3 of
[Bolley and Villani, 2005]) that can be easily verified for log-polynomial
densities. However, simple calculations show that λBV = O(d1/p) for the
density π(x) ∝ exp(−∥x∥p).
The condition (ii) corresponds to the classicalTp inequality. The constant λT is
known to be dimension independent.

Conclusion

We quantify the convergence of the SVGD algorithm in average Stein-Fisher in-
formation under certain assumptions, which generalize the previously known re-
sults. In particular, our analysis allows to treat the case of high order polynomial
potential functions which remained out of the scope of the prior work.
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