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The Problem

We study convergence properties and worst-case complexity bounds of stochastic gradient
descent with a biased gradient estimator (BiasedSGD; see Algorithm 1) for solving general
optimization problems of the form

min
x∈Rd

f (x),

where the function f : Rd → R is possibly nonconvex, satisfies several smoothness and
regularity conditions: f is differentiable, L-smooth (i.e., ∥∇f (x) − ∇f (y)∥ ≤ L∥x − y∥ for
all x, y ∈ Rd), and bounded from below by f ∗ ∈ R. Given an error tolerance ε > 0, we seek
a random vector x ∈ Rd such that one of the following inequalities holds:

i) E [f (x) − f ∗] ≤ ε; ii) E ∥x − x∗∥2 ≤ ε ∥x0 − x∗∥2 ; iii) E ∥∇f (x)∥2 ≤ ε2.

Algorithm 1: BiasedSGD
Parameters: Stepsize γ > 0, initial iterate x0 ∈ Rd

for t = 0, 1, . . . do
Construct a (possibly biased) estimator gt := g(xt) of the gradient ∇f (xt)
Compute xt+1 = xt − γgt

end

A Zoo of Assumptions

There exists a Zoo of assumptions on the stochastic gradient estimators in works on
BiasedSGD. In the diagram we present the assumptions from the literature and estab-
lish transitive connections between them.

Our work is motivated by the need of a more accurate and informative analysis of BiasedSGD
in the strongly convex and nonconvex settings, which are problems of key importance in
optimization and deep learning. Our results are generic and cover both subsampling and
compressive estimators, among others. We generalize the existing conditions on the first
moment and combine them with ABC-assumption to develop our Biased ABC framework.

New Assumption: Biased ABC

∃ A, B, C, b, c ≥ 0 s.t. ∀ x ∈ Rd the gradient estimator g(x) satisfies
⟨∇f (x),E[g(x)]⟩ ≥ b ∥∇f (x)∥2 − c, (1)

E
[
∥g(x)∥2

]
≤ 2A (f (x) − f ∗) + B ∥∇f (x)∥2 + C. (2)

Khaled and Richtárik [4] proposed (2) in the unbiased case. A (f (x) − f ∗) in (2) emerges
when f (x) =

∑n
i=1 fi(x) and we bound the expression

∑n
i=1 qi ∥∇fi(x)∥2 , qi ≥ 0 (typical

second moment bound for estimators based on sampling): it can not be confined solely by
B ∥∇f (x)∥2 , nor by a constant C, yet smoothness suffices to bound this by A (f (x) − f ∗) .
Weaker versions of (1) were proposed in Bottou et al. [3] and in Beznosikov et al. [2].

Our first theorem, described informally below, provides required counterexamples of problems
and estimators for the diagram.

Theorem 1

The assumptions connected by dashed lines in the diagram are mutually non-implicative.

Our second theorem, described informally below, states that our new Biased ABC assumption
is the least restrictive of the assumptions in the literature.

Theorem 2

Biased ABC Assumption is the weakest among the assumptions in the literature.

In fact, conditions (1) and (2) are the least restrictive individually.
We summarize known assumptions on biased stochastic gradients. Estimators satisfying any
of them, belong to our general Biased ABC framework with parameters A, B, C, b and c
provided in this table.

Note that the constants are too pessimistic: given the estimator satisfying one of these
assumptions, direct computation of constants in Biased ABC framework for it might lead to
much more accurate results.

Convergence Analysis

We show the convergence of BiasedSGD under Biased ABC assumption in nonconvex case.

Theorem 3

Let δ0 := f (x0) − f ∗, and choose the stepsize such that 0 < γ ≤ b
LB. Then the iterates

{xt}t≥0 of BiasedSGD (Algorithm (1)) satisfy

min
0≤t≤T−1

E
[∥∥∥∇f (xt)

∥∥∥2
]

≤ 2 (1 + LAγ2)T

bγT
δ0 + LCγ

b
+ c

b
.

One of the popular generalizations of strong convexity in the literature is the Polyak–
Łojasiewicz assumption: ∃ µ > 0 s.t. ∀x ∈ Rd : ∥∇f (x)∥2 ≥ 2µ (f (x) − f ∗) .

Theorem 4

Suppose PŁ-condition holds. Let δ0 := f (x0) − f ∗ and choose a stepsize such that
0 < γ < min

{
µb

L(A+µB),
1
µb

}
. For every T ≥ 1, we have

E
[
f (xT ) − f ∗

]
≤ (1 − γµb)T δ0 + LCγ

2µb
+ c

µb
.

The function f is µ-strongly convex, if there exists µ ≥ 0 such that

f (x) + ⟨∇f (x), y − x⟩ + µ

2
∥y − x∥2 ≤ f (y) ∀x, y ∈ Rd.

Since PŁ-condition is more general than µ-strong convexity, we can apply Theorem 4 to
strongly convex functions.

We examine whether we achieve same rates as obtained under stronger assumptions.

In most cases, we ensure the same rate, albeit with inferior multiplicative factors due to the
broader scope of the analysis. The notation Õ (·) hides a logarithmic factor of log 2δ0

ε . We
recover the optimal rates in the unbiased case and prove they are optimal in the biased case.

Popular Estimators Within Biased ABC Framework

We introduce a new Biased independent sampling estimator. Let 0 < pi ≤ 1, Si = {i}
with probability pi or ∅ otherwise, i ∈ [n],

∑n
i=1 pi ∈ (0, n]. Let S :=

⋃n
i=1 Si. Let Ii = 1 if

i ∈ S and Ii = 0 otherwise. Define g(x) = 1
|S|

∑n
i=1 Ii∇fi(x). Practical use:

• If there is no access to the entire dataset, a fixed batch strategy can be employed. This
strategy involves sampling a single batch S at step 0 and subsequently.

• ∀i ∈ [n], an oracle decides with an unknown probability pi whether to provide the
information of ∇fi at the iteration t or not.

We provide a description of popular gradient estimators in terms of the Biased ABC frame-
work. Unlike the existing assumptions, which implicitly assume that the bias comes from
either perturbation or compression, Biased ABC also holds in settings such as subsampling.

We list several popular estimators and indicate which of the assumptions in the
literature they satisfy. Only Assumption 9 (Biased ABC) encompasses them all.
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