

1. INTRODUCTION

- truss a mechanical construction made of elastic **bars** linked to each other at **nodes** (these are fixed or free)
- **load** external forces acting at the free nodes, causing deformation of the truss
- compliance potential energy stored in the truss after deformation

Goal of TTD: Given a grid structure of nodes and forces acting on them, construct a truss of a given total weight of **minimum compliance**.

Applications of TTD: Railroad bridges, electric masts, ...

2. The Algorithm

Consider the following optimization problem $\min_{x \in \mathbb{R}^n} F(x) \equiv f(x) + \Psi_1(x^{(1)}) + \dots + \Psi_n(x^{(n)}), \quad (P)$ with f convex and $\forall x, \tau$ and i satisfying $\left|\nabla_{i} f(x) - \nabla_{i} f(x + \tau e_{i})\right| \leq L_{i} |\tau|$ (gradient of f is coordinate-wise Lipschitz) and Ψ_i convex, nonsmooth and simple. Algorithm 1: UCDC 1 choose initial point $x_0 \in \mathbb{R}^n$ for k = 1, 2, ... do choose $i \in \{1, 2, \ldots, n\}$ with prob. $\frac{1}{n}$ 2 $\tau^* = \arg\min_{\tau \in \mathbb{R}} \nabla_i f(x_k) \tau + \frac{L_i}{2} \tau^2 + \Psi_i(x_k^{(i)} + \tau)$ 3 $x_{k+1} := x_k + \tau^* e_i$

Theorem (R-T [5]): Choose initial point x_0 and target confidence ρ . If target accuracy satisfies $0 < \epsilon < F(x_0) - F^*$ then after

 $k \ge \frac{2nC}{\epsilon} \left(1 + \log \frac{1}{\rho} \right) + 2 - \frac{2nC}{F(x_0) - F^*}$ iterations we get $\operatorname{Prob}[F(x_k) - F(x^*) \le \epsilon] \ge 1 - \rho,$ where $C = \max\{R_L^2(x_0), F(x_0) - F^*\},\$ $R_L(x_0) = \max_x \{ \|x - x^*\|_L : F(x) \le F(x_0) \},\$ $||x||_L = (\sum_{i=1}^n L_i(x^{(i)})^2)^{\frac{1}{2}}$ and x^* solves (P).

9. References

Nemirovski, A., Ben-Tal, A.: Lectures on Modern Convex [2] Nesterov, Yu.: Smooth minimization of non-smooth func-Optimization: Analysis, Algorithms, and Engineering Aptions, Mathematical Programming, 103 (2005), pp. 127-152. plications. Society for Industrial and Applied Mathematics, [3] Nesterov, Yu.: Efficiency of coordinate descent methods on [5] Philadelphia, PA, USA, 2001. huge-scale optimization problems, CORE Discussion Paper #2010/2, January 2010.

A RANDOMIZED COORDINATE DESCENT METHOD FOR LARGE-SCALE TRUSS TOPOLOGY DESIGN Peter Richtárik and Martin Takáč

3. Optimization Formulations of Truss Topology Design

# nodes (grid size)	$r \times c$
# free nodes	m
# fixed nodes	rc-m
# potential bars	n
bar weights	$w \in \mathbb{R}^n$
forces acting at the free nodes	$d \in R^{2m}$
displacement associated with bar i	$b_i \in R^{2m}$

Linearization of the physics involved gives the following formula:

$$\operatorname{Compl}_{d}(w) = \frac{1}{2}d^{T}v, \quad \text{where} \quad \sum_{i=1}^{n} w_{i}b_{i}b_{i}^{T}v = d. \quad (1)$$
(see

8. NUMERICAL EXAMPLES Grid size: 25x25; $B \in R^{1,250x119,016}$ Grid size: 25x25; $B \in R^{1,250x119,016}$ Grid size: 25x25; $B \in R^{1,250x119,016}$ Fréé : Node ° Fixed Node External Force Grid size: 6x39; B ∈ R^{468x16,646} **Bridge trusses:** there is a downward external force acting on every node covered by the green line.

The pro $\sum_i w_i$

the du min

Proble

Peter.Richtarik@ed.ac.uk, M.Takac@sms.ed.ac.uk

oblem of minimizing compliance subject	et to
= 1 can be equivalently written as	
$\max_{v} \{ d^{T}v : b_{i}^{T}v \leq 1, i = 1, \dots, n \},\$	(2)
al of which is equivalent to	
$\{ \ q\ _1 : Bq = d \}, \text{ where } B = (b_1, \dots, b_n).$	(3)
em(2) can be reformulated as	
$\min_{v} \{ \max_{i} b_{i}^{T}v : d^{T}v = 1 \}.$	(4)

After elimination of one variable from $d^T v = 1$ we get an unconstrained problem of the form: $\min\{\max|\tilde{b}_i^T\tilde{v}-c_i|\}$ (5)

see [1, 4] for more details).

Richtárik, P.: Simultaneously solving seven optimization problems in relative scale, Optimization online, 2009. Richtárik, P., Takáč, M.: Iteration complexity of randomized block-coordinate descent methods for minimizing a composite function, 2011.

4. APPROACH 1 (PENALIZATION)

Instead of function w

and instea

UCD

5. Approach 2 (Smoothing)

The objective of (5) can be approximated to any accuracy by the smooth convex function (see [3,4]for details) $f_{\xi}^{2}(\tilde{v}) = \xi \log \left| \frac{1}{2n} \sum_{i=1}^{n} \left(e^{(\tilde{b}_{i}^{T} \tilde{v} - c_{i})/\xi} + e^{-(\tilde{b}_{i}^{T} \tilde{v} - c_{i})/\xi} \right) \right|$ Moreover, $0 \le \max |\tilde{b}_i^T \tilde{v} - c_i| - f_{\xi}^2(\tilde{v}) \le \xi \log 2n, \ \forall \tilde{v}.$ UCDC runs with $f = f_{\xi}^2$ and $\Psi_i \equiv 0$

Potential numerical problems with small ξ can be avoided by minimizing $e^{-M/\xi} f_{\xi}(\tilde{v})$, where M = $\max |\tilde{b}_i^T \tilde{v}_0 - c_i|$ and v_0 is our initial point.

work/it compu

7. DATA STRUCTURE

While the size of B grows fast with the grid size, each column has at most 4 nonzeros!

grid $r \times c$	$B \in \mathbb{R}^{2m \times n}$	nonzero elm.
5×5	50×196	712
25×25	1,250 imes 119,016	473,712
100×100	20,000 imes 30, 398, 795	121, 555, 778
125×125	$31,250 \times 74, 220, 244$	296, 819, 224

solving problem (3) one may penalize	e the
ith	
$f_{\gamma}^{1}(q) \equiv \frac{\gamma}{2} \ Bq - d\ _{2}^{2}, \gamma > 0$	
ad solve:	
$\min_{q} \{ \ q\ _{1} + f_{\gamma}^{1}(q) \}.$	(6)
OC runs with $f = f_{\gamma}^1$ and $\Psi_i \equiv \cdot $.	

6. Comparison of Approaches

	Approach 1	Approach 2		
f	f_{γ}^1	f_{ξ}^2		
$\Psi_i(\cdot)$	•	0		
L_i	$\gamma b_i^T b_i$	$\frac{2}{\xi} \ B_i\ _{\infty}^2$		
ork/iteration	O(4)	O(2n/m)		
omputing L_i	O(4)	O(2n/m)		
$(B_i \text{ is } i\text{-th row of } B)$				
Each iteration is extremely cheap!				