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1. Introduction
truss - a mechanical construction made of elastic

bars linked to each other at nodes (these are
fixed or free)

load - external forces acting at the free nodes, caus-
ing deformation of the truss

compliance - potential energy stored in the truss
after deformation

Goal of TTD: Given a grid structure of nodes and
forces acting on them, construct a truss of a given
total weight of minimum compliance.

Applications of TTD: Railroad bridges, electric
masts, ...

3. Optimization Formulations of Truss Topology Design

# nodes (grid size) r × c
# free nodes m
# fixed nodes rc−m
# potential bars n
bar weights w ∈ Rn
forces acting at the free nodes d ∈ R2m

displacement associated with bar i bi ∈ R2m

Linearization of the physics involved gives the follow-
ing formula:

Compld(w) = 1
2d
T v, where

n∑
i=1

wibib
T
i v = d. (1)

The problem of minimizing compliance subject to∑
i wi = 1 can be equivalently written as

max
v
{dT v : |bTi v| ≤ 1, i = 1, . . . , n}, (2)

the dual of which is equivalent to

min
q
{‖q‖1 : Bq = d}, where B = (b1, . . . , bn). (3)

Problem (2) can be reformulated as
min
v
{max

i
|bTi v| : dT v = 1}. (4)

After elimination of one variable from dT v = 1 we get
an unconstrained problem of the form:

min
ṽ
{max

i
|b̃Ti ṽ − ci|} (5)

(see [1, 4] for more details).

4. Approach 1 (Penalization)
Instead of solving problem (3) one may penalize the
function with

f1γ (q) ≡ γ

2
‖Bq − d‖22, γ > 0

and instead solve:
min
q
{‖q‖1 + f1γ (q)}. (6)

UCDC runs with f = f1γ and Ψi ≡ | · |.

5. Approach 2 (Smoothing)
The objective of (5) can be approximated to any
accuracy by the smooth convex function (see [3,4]
for details)

f2ξ (ṽ) = ξ log

[
1

2n

n∑
i=1

(
e(b̃

T
i ṽ−ci)/ξ + e−(b̃

T
i ṽ−ci)/ξ

)]
.

Moreover,
0 ≤ max

i
|b̃Ti ṽ − ci| − f2ξ (ṽ) ≤ ξ log 2n, ∀ṽ.

UCDC runs with f = f2ξ and Ψi ≡ 0

Potential numerical problems with small ξ can be
avoided by minimizing e−M/ξfξ(ṽ), where M =

max
i
|b̃Ti ṽ0 − ci| and v0 is our initial point.

6. Comparison of approaches

Approach 1 Approach 2

f f1γ f2ξ
Ψi(·) | · | 0
Li γbTi bi

2
ξ‖Bi‖

2
∞

work/iteration O(4) O(2n/m)
computing Li O(4) O(2n/m)

(Bi is i-th row of B)
Each iteration is extremely cheap!

2. The Algorithm
Consider the following optimization problem

min
x∈Rn

F (x) ≡ f(x) + Ψ1(x(1)) + · · ·+ Ψn(x(n)), (P)

with f convex and ∀x, τ and i satisfying
|∇if(x)−∇if(x+ τei)| ≤ Li|τ |

(gradient of f is coordinate-wise Lipschitz) and Ψi

convex, nonsmooth and simple.

Algorithm 1: UCDC

choose initial point x0 ∈ Rn1

for k = 1, 2, . . . do
choose i ∈ {1, 2, . . . , n} with prob. 1

n2

τ∗ = arg min
τ∈R
∇if(xk)τ+ Li

2 τ
2+Ψi(x

(i)
k +τ)

3

xk+1 := xk + τ∗ei4

Theorem (R-T [5]): Choose initial point x0 and
target confidence ρ. If target accuracy satisfies
0 < ε < F (x0)− F ∗ then after

k ≥ 2nC
ε

(
1 + log 1

ρ

)
+ 2− 2nC

F (x0)−F∗

iterations we get
Prob[F (xk)− F (x∗) ≤ ε] ≥ 1− ρ,

where C = max{R2
L(x0), F (x0)− F ∗},

RL(x0) = maxx{‖x− x∗‖L : F (x) ≤ F (x0)},
‖x‖L = (

∑n
i=1 Li(x

(i))2)
1
2 and x∗ solves (P).

7. Data structure
While the size of B grows fast with the grid size,
each column has at most 4 nonzeros!

grid r × c B ∈ R2m×n nonzero elm.

5× 5 50× 196 712
25× 25 1, 250× 119, 016 473, 712

100× 100 20, 000× 30,398,795 121, 555, 778
125× 125 31, 250× 74,220,244 296, 819, 224

8. Numerical Examples

Bridge trusses: there is a downward external force acting on every node covered by the green line.
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