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Better Rates for Lazy Aggregation

Table 2 Comparison of exisiting and proposed theoretically-supported methods employing lazy aggregation. In the rates for

our methods, My, = L_ + L +/B/4A and My = max {L_ + L1 +/2B/a, A/zu}.

Method SiMple Ases{a contructive Strongly convex rate PL nonconvex rate General nonconvex rate
method? compressor C?

LAG (Chen et al., 2018) : X linear © X X

LAQ (Sun et al., 2019) X v linear © X X

LENA (Ghadikolaei et al., 2021) 7 /@ /® O(CH /T2 )PP oY /T2 oe/?yTs)e

LAG (NEW, 2022) X O(exp(—Tu/Mz2))  O(exp(—Tp/M2)) O(M,/T)

CLAG (NEW, 2022) /? O(exp(—=Tu/Mz))  O(exp(—Tu/Ms)) O(M,/T)

(1) They consider a specific form of quantization only.

) Works with any contractive compressor, including low rank approximation, Top- K, Rand- K, quantization, and more.
) Their Theorem 1 does not present any explicit linear rate.
@ | ENA employs the classical EF mechanism, but it is not clear what is this mechanism supposed to do.
) They consider an assumption (u-quasi-strong convexity) that is slightly stronger than our PE assumption. Both are weaker than strong convexity.
© They assume the local gradients to be bounded by G (|| V f; (x)|| < G for all ). We do not need such a strong assumption.

() They also consider the 0-quasi-strong convex case (slight generalization of convexity); we do not consider the convex case. Moreover, they consider the stochastic

case as well, we do not. We specialized all their results to the deterministic (i.e., full gradient) case for the purposes of this table.

® Their contractive compressor depends on the trigger.
© Tt is possible to specialize their method and proof so as to recover LAG as presented in our work, and to recover a rate similar to ours.
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CLAG: Combining the Benefits of EF21 and LAG
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Summary & Extensions

* 3PC recovers

(GD) and its rate
(EF21) and its rate
(LAG) & gets a rate

* 3PC uncovers a hidden link between error feedback and lazy aggregation
mechanisms & literature

e 3PC includes

which combines the benefits of EF21 and LAG
* several additional new methods (not mentioned in this talk)

* We prove
for smooth nonconvex functions
under the Polyak-tojasiewicz condition (not mentioned in this talk)
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