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Optimization Formulation of Federated Learning
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Optimization Formulation of Federated Learning

# devices /

1 (4 machines
: def
min f(x) = — ) fi(x)
rERA n 4
1=1
# model parameters / features Loss on local data D; stored on device ¢
fi(x) = Eennp, fie(T)
The datasets Dy, ..., D,, can be arbitrarily heterogeneous
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Broadcast ;4 x to the workers
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Consensus Reformulation

mn
. def 1 Bad: Non-differentiable
min {f(x) = = E fz(x)} function
rERA n —

Good: Indicator function of a

@ nonempty closed convex set
optimization in R™?

min Zf@ iy —|—¢($1, )

T1,...,Tn ERA

optimization in R?

def |0, ity = =x,,

Y (X1, e, Ty) =

+00, otherwise.
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Key Method: Proximal Gradient Descent

proximal operator:

e : 1
prox,, () ' arg min <¢(u) + §||u — .:1:||2>

ueRd stepsize

Ti+1 = ProxX.,y (QUt — va(aft))
-V

proximal operator gradient operator

T+ Prox., () r— x—yVf(x)

Key Observation: Prox = Communication!
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Proximal Gradient Descent: Theory

f is pu-convex and L-smooth:

Lz —y||? < D¢(x,y) < 2|z — y||?

% is the condition number of f

Theorem:

8> Flogz > lax— &l <elzo — &l

(for stepsize v = )

# iterations def

Error tolerance Tyx = arg affel]lg% f(z) +¥(x)
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ProxSkip: “Do Proximal Gradient Descent,
but Skip Most of the Prox Evaluations!”

Tiv1 =@ — v (VSf(xe) — hy)

with probability 1 — p do Tip1 = Tyt hit1 = hy
1l—p=1

evaluate proxy ,(7)
p

with probability p do

{?

Li41 = ¢ 4

hupr =

p~0
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Th f is p-convex and L-smooth:
eorem: Llla — yl12 < Dy (@) < il -yl

% is the condition number of f

L 1 1 i
tzmax{ , 2}log8 j £ (U] < el

fp
# iterations Lyapunov function:
def 2 1 2
p = probability of \Ijt — ||£Ut - ZE*H I 2 9 Hht - h*H
evaluating the prox L P
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ProxSkip: Optimal Prox-Evaluation Probability

Since in each iteration we evaluate the prox with probability p,
the expected number of prox evaluations after ¢ iterations is:

p-t:p-max{ﬁ,plg}-log%:max{p-%,%}-log%
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ProxSkip: Optimal Prox-Evaluation Probability

Since in each iteration we evaluate the prox with probability p, I - »
: . . : ~ is the condition number of f
the expected number of prox evaluations after ¢ iterations is: M

p-t:p-max{ﬁ,plz}-log%:max{p-%,%}-log%

Computation of optimal p, for % =2

Minimized for p satisfying p - % = % 0B
1 g/ :
i Px — —F/—— Y=w
L///L 0 i 1 2 3 4 5
Dy = % ~ 0.707 P 10/13



Federated Learning: ProxSkip vs Baselines

Table 1. The performance of federated learning methods employing multiple local gradient steps in the strongly convex regime.

method # local steps # floats sent stepsize linear # rounds rate better
per round per round on client ¢ rate? than GD?
GD (Nesterov, 2004) 1 d z v O(k) © X
LocalGD (Khaled et al., 2019; 2020) T d % X @) ( ui_ie> () X
Scaffold (Karimireddy et al., 2020) T 2d L © v O(k) © X
S-Local-GD @ (Gorbunov et al., 2021) T d<# <2d? — v O(k) X
FedLin ® (Mitra et aL,, 2021) T; 2d T,lL v @(Kz) © X
© (thi ~ ‘

Scaffnew ‘#’ (this work) 1 () 1 ( 1 ) © v

for any p € (0, 1] P g L 4 Olprts (forp > 1)

Scaffnew © (this work) ~
(h) 1 (©)

for optimal p = —— VK @ L 7 O(Vk) 4

VE
@ This is a special case of S-Local-SVRG, which is a more general method presented in (Gorbunov et al., 2021). S-Local-GD arises as a special case when full gradient
is computed on each client.
® Fed Lin is a variant with a fixed but different number of local steps for each client. Earlier method S-Local-GD has the same update but random loop length.
© The O notation hides logarithmic factors.
@ G is the level of dissimilarity from the assumption = 3°7 ||V f;(2)||> < G + 2LB? (f(z) — f), V.
©) We use Scaffold’s cumulative local-global stepsize 7;7 g for a fair comparison.
® The number of sent vectors depends on hyper-parameters, and it is randomized.
® Scaffnew (Algorithm 2) = ProxSkip (Algorithm 1) applied to the consensus formulation (6) + (7) of the finite-sum problem (5).

® ProxSkip (resp. Scaffnew) takes a random number of gradient (resp. local) steps before prox (resp. communication) is computed (resp. performed). What is shown

in the table is the expected number of gradient (resp. local) steps. 11 /1 3



Scaffnew (=ProxSkip applied to FL) vs Baselines

100 100

T o o 28 2 P . N P
—

102 - — 102
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<% 10 —e— Scaffold <% 10 —e— Scaffold ] Scaffold
R —— Scaffnew N —— Scaffnew Scaffnew
;i/ 106 FedLin ;i/ 106 FedLin - FedLin
S-Local-GD S-Local-GD S-Local-GD
108 108
10—10 10—10
0 100 200 300 400 500 0 200 400 600 800 1000 200 400 600 800 1000
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(a) tuned hyper-parameters (b) tuned hyper-parameters (c) theoretical hyper-parameters

Figure 1. Deterministic Problem. Comparison of Scaffnew to other local update methods that tackle data-heterogeneity and to LocalGD. In
(a) we compare communication rounds with optimally tuned hyper-parameters. In (b) we compare communicated vectors (Scaffold, FedLin
and S-Local-GD require transmission of additional variables). In (c), we compare communication rounds with the algorithm parameters set
to the best theoretical stepsizes used in the convergence proofs.

L2-regularized logistic regression: a; € R b, € {—1,41}, A= L/104
1 & A
flz) =~ Z;log (1+exp (=bia; z)) + 5 [l w8a dataset from LIBSVM library (Chang & Lin, 2011)
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Scaffnew (=ProxSkip applied to FL) vs Nesterov

—— Nesterov
102 —— ProxSkip
“ 104
|
B
106
108

0 250 500 750 1000 1250 1500 1750 2000
Communication rounds
13/13



