CISPA

EEEEEEEEEEEEEEEEEE
IIIIIIIIIIIIIIIIIII

Y lreeia— o

King Abdullah University of
Science and Technology

ProxSkip: Yes! Local Gradient Steps Provably Lead
to Communication Acceleration! Finally!

Peter Richtarik

ICML 2022, Baltimore, Maryland, USA

i o8 _.,@ﬁ

Konstantin Mishchenko Grigory Malino Sebastian Stich

=0 a ~ S CISPA
S lreeia— \'KAUST K

1/13

Optimization Formulation of Federated Learning

min f(z def 1 Zf@

rceRA

2/13

Optimization Formulation of Federated Learning

devices /
machines

min f(z def 1 Zf@

rceRA

2/13

Optimization Formulation of Federated Learning

devices /
machines

min f(z def 1 Zf”b

xR

model parameters / features

2/13

Optimization Formulation of Federated Learning

devices /

1 (4 machines
: def
min f(x) = —) fi(x)
rERA n 4
1=1
model parameters / features Loss on local data D; stored on device ¢
fi(x) = Eennp, fie(T)
The datasets Dy, ..., D,, can be arbitrarily heterogeneous

2/13

Optimization problem:

Distributed Gradient Descent .5

(Each worker performs using its local function, and the results are averaged)

3/13

Distributed

(Each worker performs

Worker 1

B

Gradient Descent

using its local function, and the results are averaged)

Worker 2

+[E]

Optimization problem:

min f(x) def %i fi(z)
i=1

zER4

Worker 3

B

3/13

Distributed

(Each worker performs

Worker 1

B

Gradient Descent

using its local function, and the results are averaged)

Worker 2

+[E]

Server

Optimization problem:

min f(x) def %i fi(z)
i=1

zER4

Worker 3

B

3/13

Distributed

(Each worker performs

Worker 1

B

Receive z; from the server

Optimization problem:

Gradient Descent i 9 L3

using its local function, and the results are averaged)

Worker 2 Worker 3
Receive x; from the server Receive x; from the server
Server

3/13

Distributed

(Each worker performs

Worker 1

B

Receive z; from the server

T1,t = Tt

Optimization problem:

Gradient Descent i 9 L3

using its local function, and the results are averaged)

Worker 2 Worker 3
Receive x; from the server Receive x; from the server
L2t = Lt T3t = T
Server

3/13

Distributed

(Each worker performs

Worker 1

B

Receive z; from the server

T1,t = Tt

141 =214 — YV fi(z14)

Optimization problem:

Gradient Descent .=y

using its local function, and the results are averaged)

Worker 2 Worker 3
Receive x; from the server Receive x; from the server
L2t = Tt T3t = Tt
Tot+1 = Tot — YV f2(T2,t) T341 = T3 — YV f3(23,0)
Server

3/13

Distributed

(Each worker performs

Worker 1

B

Receive z; from the server

T1,t = Tt

141 =214 — YV fi(z14)
Tl 442 = T1441 — YV f1(21,041)

Optimization problem:

Gradient Descent .=y

using its local function, and the results are averaged)

Worker 2 Worker 3
Receive x; from the server Receive x; from the server
L2t = Lt T3t = T
To,t+1 = T2,t — VYV f2(T2,t) T3,4+1 = Tzt — YV f3(T3,t)
To t+2 = To 41 — YV fa(T2,641) T3 42 = T3t+1 — YV f3(T3,441)
Server

3/13

Distributed

(Each worker performs

Worker 1

B

Receive z; from the server

T1,t = Tt

141 =214 — YV fi(z14)
Tl 442 = T1441 — YV f1(21,041)

Optimization problem:

Gradient Descent .=y

using its local function, and the results are averaged)

Worker 2 Worker 3
Receive x; from the server Receive x; from the server
L2t = Lt T3t = T
To,t+1 = T2,t — VYV f2(T2,t) T3,4+1 = Tzt — YV f3(T3,t)
To t+2 = To 41 — YV fa(T2,641) T3 42 = T3t+1 — YV f3(T3,441)
Server

3/13

Optimization problem:

Distributed Gradient Descent .5

(Each worker performs using its local function, and the results are averaged)
Worker 1 Worker 2 Worker 3
Receive z; from the server Receive z; from the server Receive x; from the server

T1t = Tt T2t — Tt I3t — Tt
T1 41 = 21 — YV f1(z1,) Tot11 = Tat — YV fa(w2,y) T3.141 = T3t — YV f3(23)
T1442 = T1 41 — YV 1(21,641) To 142 = To 41 — YV o (22,41) T3142 = T3 141 — YV f3(23,041)
T4k = T+ k-1 — YV 1104 K1) To1+K = Tap4K—1 — YV 2 (2214 K-1) T344+K = T30+K—1 — YV f3(T3 14K -1)

Server

3/13

Optimization problem:

Distributed Gradient Descent .5

(Each worker performs using its local function, and the results are averaged)
Worker 1 Worker 2 Worker 3
Receive z; from the server Receive z; from the server Receive x; from the server

T1t = Tt T2t — Tt I3t — Tt
T1 41 = 21 — YV f1(z1,) Tot11 = Tat — YV fa(w2,y) T3.141 = T3t — YV f3(23)
T1442 = T1 41 — YV 1(21,641) To 142 = To 41 — YV o (22,41) T3142 = T3 141 — YV f3(23,041)
T144+K = T+ k-1 — YV 1104 K-1) To1+K = Top+K—1 — YV 2 (2214 K1) T34+ K = T30+ K—1 — YV f3(T3,14 K1)

Server

3/13

Optimization problem:

Distributed Gradient Descent .5

(Each worker performs using its local function, and the results are averaged)
Worker 1 Worker 2 Worker 3
Receive z; from the server Receive z; from the server Receive x; from the server
T1t = Tt T2t — Tt I3t — Tt
T1441 = 1,0 — YV f1(T1,4) Tot+1 = Tar — YV f2(2,t) T341 = T3 — YV f3(23,0)
T1t42 = T141 — YV 1(T1,641) To t+2 = To 41 — YV fa(T2,641) T3 42 = T3t+1 — YV f3(T3,441)
T144+K = T+ k-1 — YV 1104 K-1) To1+K = Top+K—1 — YV 2 (2214 K1) T34+ K = T30+ K—1 — YV f3(T3,14 K1)
Server
3
1
T+ K = § Tit+K
1=1

3/13

Optimization problem:

Distributed Gradient Descent .5

(Each worker performs using its local function, and the results are averaged)
Worker 1 Worker 2 Worker 3
Receive z; from the server Receive z; from the server Receive x; from the server
T1t = Tt T2t — Tt I3t — Tt
T1441 = 1,0 — YV f1(T1,4) Tot+1 = Ta — YV f2(22,t) T341 = T3 — YV f3(23,0)
T1t42 = T141 — YV 1(T1,641) To 12 = To 141 — YV fa(T2,641) T3 42 = T3t+1 — YV f3(T3,441)
T14+K = T+ k-1 — YV (2104 K1) To1+K = Top4K—1 — YV 2(22 14 K-1) T34+ K = T30+ K—1 — YV f3(T3,14 K1)
Server
3
1
T+ K = § Tit+K
1=1

Broadcast ;4 x to the workers

3/13

Key Open Problem in Federated Learning

4/13

Key Open Problem in Federated Learning

Local training is of key importance in FL: in practice, it significantly
improves communication efficiency.

4/13

Key Open Problem in Federated Learning

Local training is of key importance in FL: in practice, it significantly
improves communication efficiency.

However, there is no theoretical result explaining this!

4/13

Key Open Problem in Federated Learning

Local training is of key importance in FL: in practice, it significantly
improves communication efficiency.

However, there is no theoretical result explaining this!

4/13

Consensus Reformulation

i {f(w) S fox)}

optimization in R?

5/13

Consensus Reformulation
- dor L~ g
a{gg}l{f(w) = n;fz()}

optimization in R™?

min {%Zfz($z)+¢($1,>$n)}

$1,...,a}nERd

optimization in R?

5/13

Consensus Reformulation
. def 1 e
Q{Iég}l{f(w) = E;fz’(x>}

optimization in R™?

min {iZfz($z)+¢($1,a$n)}

xl,...,anRd

def |0, ity = =x,,
zp(xl,...,xn){ !

+00, otherwise.

optimization in R?

5/13

Consensus Reformulation

mn
. def 1 Bad: Non-differentiable
min {f(x) = = E fz(x)} function
rERA n —

Good: Indicator function of a

@ nonempty closed convex set
optimization in R™?

min Zf@ iy —|—¢($1,)

T1,...,Tn ERA

optimization in R?

def |0, ity = =x,,

Y (X1, e, Ty) =

+00, otherwise.

5/13

Key Method: Proximal Gradient Descent

xe — YV f(x¢)

6/13

Key Method: Proximal Gradient Descent

stepsize

xe =V f(x¢)

6/13

Key Method: Proximal Gradient Descent

stepsize

xe =V f(x¢)
I_'_l

gradient operator

r— x—yVf(x)

6/13

Key Method: Proximal Gradient Descent

stepsize

Ti41 = ProxX., (QUt — ”va(aft))
—

gradient operator

r— x—yVf(x)

6/13

Key Method: Proximal Gradient Descent

stepsize

Ti+1 = ProxX.,y (QUt — ”va(aft))
-V

proximal operator gradient operator

T+ Prox., () r— x—yVf(x)

6/13

Key Method: Proximal Gradient Descent

proximal operator:

e : 1
prox,, () ' arg min (¢(u) + §||u — :c||2)

ueRd stepsize

Ti41 = ProxX., (QUt — ”va(aft))
-V

proximal operator gradient operator

T+ Prox., () r— x—yVf(x)

6/13

Key Method: Proximal Gradient Descent

proximal operator:

e : 1
prox,, () ' arg min <¢(u) + §||u — .:1:||2>

ueRd stepsize

Ti+1 = ProxX.,y (QUt — va(aft))
-V

proximal operator gradient operator

T+ Prox., () r— x—yVf(x)

Key Observation: Prox = Communication!

6/13

Proximal Gradient Descent: Theory

Theorem:

7/13

Proximal Gradient Descent: Theory

Theorem:

L 1

7/13

Proximal Gradient Descent: Theory

Theorem:

L 1

iterations

7/13

Proximal Gradient Descent: Theory

f is p-convex and L-smooth:

Lz —yl|? < Dy(z,y) < L)z — y|?

% is the condition number of f

Theorem:

t>%10g%

iterations

7/13

Proximal Gradient Descent: Theory

f is p-convex and L-smooth:

Lz —yl|? < Dy(z,y) < L)z — y|?

% is the condition number of f

Theorem:

iterations
Error tolerance

7/13

Proximal Gradient Descent: Theory

f is p-convex and L-smooth:

Lz —yl|? < Dy(z,y) < L)z — y|?

% is the condition number of f

Theorem:

iterations
Error tolerance

7/13

Proximal Gradient Descent: Theory

f is p-convex and L-smooth:

Lz —yl|? < Dy(z,y) < L)z — y|?

% is the condition number of f

Theorem:

L., 1
t > 7 log 2 i

(for stepsize v =)

iterations
Error tolerance

7/13

Proximal Gradient Descent: Theory

f is pu-convex and L-smooth:

Lz —y||? < D¢(x,y) < 2|z — y||?

% is the condition number of f

Theorem:

8> Flogz > fag— . <glwo — w3

(for stepsize v =)

iterations
Error tolerance

7/13

Proximal Gradient Descent: Theory

f is pu-convex and L-smooth:

Lz —y||? < D¢(x,y) < 2|z — y||?

% is the condition number of f

Theorem:

8> Flogz > lax— &l <elzo — &l

(for stepsize v =)

iterations def

Error tolerance Tyx = arg affel]lg% f(z) +¥(x)

7/13

ProxSkip: “Do Proximal Gradient Descent,
but Skip Most of the Prox Evaluations!”

8/13

ProxSkip: “Do Proximal Gradient Descent,
but Skip Most of the Prox Evaluations!”

Tiv1 = ¢ — v (VSf(xe) — hy)

8/13

ProxSkip: “Do Proximal Gradient Descent,
but Skip Most of the Prox Evaluations!”

Tiv1 =@ — v (V (@) — hy)

8/13

ProxSkip: “Do Proximal Gradient Descent,
but Skip Most of the Prox Evaluations!”

Tiv1 =@ — v (VSf(xe) — hy)

8/13

ProxSkip: “Do Proximal Gradient Descent,
but Skip Most of the Prox Evaluations!”

Tiv1 =@ — v (VSf(xe) — hy)

8/13

ProxSkip: “Do Proximal Gradient Descent,
but Skip Most of the Prox Evaluations!”

Tiv1 =@ — v (VSf(xe) — hy)

with probability 1 — p do
1l—p=1

with probability p do

p~0

8/13

ProxSkip: “Do Proximal Gradient Descent,
but Skip Most of the Prox Evaluations!”

Tiv1 =@ — v (VSf(xe) — hy)

with probability 1 — p do Tip1 = Tyt hit1 = hy

1l—p=1

with probability p do

p~0

8/13

ProxSkip: “Do Proximal Gradient Descent,
but Skip Most of the Prox Evaluations!”

Tiv1 =@ — v (VSf(xe) — hy)

with probability 1 — p do Tip1 = Tyt hit1 = hy
1l—p=1

evaluate proxy ,(7)
p

with probability p do

{?

Li41 = ¢ 4

hupr =

p~0

8/13

ProxSkip: Bounding the # of Iterations

Theorem:

9/13

ProxSkip: Bounding the # of Iterations

Theorem:

L 1
tzmax{ , 2}log—
pop 2

9/13

ProxSkip: Bounding the # of Iterations

Theorem:

L 1 1
t > max , =5 ¢ log —
pop 2

iterations

9/13

ProxSkip: Bounding the # of Iterations

h f is p-convex and L-smooth:
Theorem: e — vl < Dy(e.y) < &z — ol

% is the condition number of f

L 1 1
tzmax{ , }log

iterations

9/13

ProxSkip: Bounding the # of Iterations

Th f is p-convex and L-smooth:
eorem: Llla — yl12 < Dy (@) < il -yl

% is the condition number of f

L 1 1
tzmax{ , }log

iterations

p = probability of
evaluating the prox

9/13

ProxSkip: Bounding the # of Iterations

Th f is p-convex and L-smooth:
eorem: Llla — yl12 < Dy (@) < il -yl

% is the condition number of f

L 1 1
tzmax{ , z}logg i

iterations

p = probability of
evaluating the prox

9/13

ProxSkip: Bounding the # of Iterations

Th f is p-convex and L-smooth:
eorem: Llla — yl12 < Dy (@) < il -yl

% is the condition number of f

L 1 1 i
tzmax{ , z}logg j E (U] < eUy

iterations

p = probability of
evaluating the prox

9/13

ProxSkip: Bounding the # of Iterations

Th f is p-convex and L-smooth:
eorem: Llla — yl12 < Dy (@) < il -yl

% is the condition number of f

L 1 1 i
tzmax{ , 2}log8 j £ (U] < el

fp
iterations Lyapunov function:
def 2 1 2
p = probability of \Ijt — ||£Ut - ZE*H I 2 9 Hht - h*H
evaluating the prox L P

9/13

ProxSkip: Optimal Prox-Evaluation Probability

Since in each iteration we evaluate the prox with probability p,
the expected number of prox evaluations after ¢ iterations is:

p-t:p-max{ﬁ,plg}-log%:max{p-%,%}-log%

10/13

ProxSkip: Optimal Prox-Evaluation Probability

Since in each iteration we evaluate the prox with probability p,
the expected number of prox evaluations after ¢ iterations is:

p-t:p-max{ﬁ,plz}-log%:max{p-%,%}-log%

10/13

ProxSkip: Optimal Prox-Evaluation Probability

Since in each iteration we evaluate the prox with probability p,
the expected number of prox evaluations after ¢ iterations is:

p-t:p-max{ﬁ,plz}-log%:max{p-%,%}-log%

10/13

ProxSkip: Optimal Prox-Evaluation Probability

Since in each iteration we evaluate the prox with probability p,
the expected number of prox evaluations after ¢ iterations is:

p-t:p-max{ﬁ,plz}-log%:max{p-ﬁ,%}-log%

10/13

ProxSkip: Optimal Prox-Evaluation Probability

Since in each iteration we evaluate the prox with probability p, I - »
: . . : ~ is the condition number of f
the expected number of prox evaluations after ¢ iterations is: M

p-t:p-max{ﬁ,plz}-log%:max{p-%,%}-log%

10/13

ProxSkip: Optimal Prox-Evaluation Probability

Since in each iteration we evaluate the prox with probability p, I - »
: . . : ~ is the condition number of f
the expected number of prox evaluations after ¢ iterations is: M

p-t:p-max{ﬁ,plz}-log%:max{p-%,%}-log%

Minimized for jp satisfying p - %

1
p
1

= = g

10/13

ProxSkip: Optimal Prox-Evaluation Probability

Since in each iteration we evaluate the prox with probability p, I - »
: . . : ~ is the condition number of f
the expected number of prox evaluations after ¢ iterations is: M

p-t:p-max{ﬁ,plz}-log%:max{p-%,%}-log%

Computation of optimal p, for % =2

Minimized for p satisfying p - % = % 0B
1 g/ :
i Px — —F/—— Y=w
L///L 0 i 1 2 3 4 5
Dy = % ~ 0.707 P 10/13

Federated Learning: ProxSkip vs Baselines

Table 1. The performance of federated learning methods employing multiple local gradient steps in the strongly convex regime.

method # local steps # floats sent stepsize linear # rounds rate better
per round per round on client ¢ rate? than GD?
GD (Nesterov, 2004) 1 d z v O(k) © X
LocalGD (Khaled et al., 2019; 2020) T d % X @) (ui_ie> () X
Scaffold (Karimireddy et al., 2020) T 2d L © v O(k) © X
S-Local-GD @ (Gorbunov et al., 2021) T d<# <2d? — v O(k) X
FedLin ® (Mitra et aL,, 2021) T; 2d T,lL v @(Kz) © X
© (thi ~ ‘

Scaffnew ‘#’ (this work) 1 () 1 (1) © v

for any p € (0, 1] P g L 4 Olprts (forp > 1)

Scaffnew © (this work) ~
(h) 1 (©)

for optimal p = —— VK @ L 7 O(Vk) 4

VE
@ This is a special case of S-Local-SVRG, which is a more general method presented in (Gorbunov et al., 2021). S-Local-GD arises as a special case when full gradient
is computed on each client.
® Fed Lin is a variant with a fixed but different number of local steps for each client. Earlier method S-Local-GD has the same update but random loop length.
© The O notation hides logarithmic factors.
@ G is the level of dissimilarity from the assumption = 3°7 ||V f;(2)||> < G + 2LB? (f(z) — f), V.
©) We use Scaffold’s cumulative local-global stepsize 7;7 g for a fair comparison.
® The number of sent vectors depends on hyper-parameters, and it is randomized.
® Scaffnew (Algorithm 2) = ProxSkip (Algorithm 1) applied to the consensus formulation (6) + (7) of the finite-sum problem (5).

® ProxSkip (resp. Scaffnew) takes a random number of gradient (resp. local) steps before prox (resp. communication) is computed (resp. performed). What is shown

in the table is the expected number of gradient (resp. local) steps. 11 /1 3

Scaffnew (=ProxSkip applied to FL) vs Baselines

100 100

T o o 28 2 P . N P
—

102 - — 102

—u— Local GD Local GD Local GD

<% 10 —e— Scaffold <% 10 —e— Scaffold] Scaffold
R —— Scaffnew N —— Scaffnew Scaffnew
;i/ 106 FedLin ;i/ 106 FedLin - FedLin
S-Local-GD S-Local-GD S-Local-GD
108 108
10—10 10—10
0 100 200 300 400 500 0 200 400 600 800 1000 200 400 600 800 1000
Communication rounds Communicated vectors Communication rounds
(a) tuned hyper-parameters (b) tuned hyper-parameters (c) theoretical hyper-parameters

Figure 1. Deterministic Problem. Comparison of Scaffnew to other local update methods that tackle data-heterogeneity and to LocalGD. In
(a) we compare communication rounds with optimally tuned hyper-parameters. In (b) we compare communicated vectors (Scaffold, FedLin
and S-Local-GD require transmission of additional variables). In (c), we compare communication rounds with the algorithm parameters set
to the best theoretical stepsizes used in the convergence proofs.

L2-regularized logistic regression: a; € R b, € {—1,41}, A= L/104
1 & A
flz) =~ Z;log (1+exp (=bia; z)) + 5 [l w8a dataset from LIBSVM library (Chang & Lin, 2011)

12/13

Scaffnew (=ProxSkip applied to FL) vs Nesterov

—— Nesterov
102 —— ProxSkip
“ 104
|
B
106
108

0 250 500 750 1000 1250 1500 1750 2000
Communication rounds
13/13

