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NEURAL INFORMATION
*%7.. PROCESSING SYSTEMS Random Reshuffling: Simple Analysis

NQ with Vast Improvements
4

Konstantin Mishchenko Ahmed Khaled Peter Ru:hl.ink
KAUST Cairo University KAU!
Thuwal, Saudi Arabia Giza, Egypt Thuwal, Soudh Araia

Abstract

Random Reshuffling (RR) s an algorithm for mi & finite-sum functions that

uuhm iterative gradient descent steps in conjunction with data reshuffling. Often

asted with its sibling Stochastic Gradient Descent (SGD), RR is usually faster

in pl:c\l:t and enjoys significant popularity in convex and non-convex optimization.

mmergem rate of RR has attracted substantial attention recently and, for

sm)ngl x and smooth functions, it was shown to converge faster than SGD if

1) the sicpsize s siall, 2 the radicns are boundec, and 3 the mumber of cpochs

islge. We remove these 3 assumptions,imrove e dependence on he condiion

number from 2 (0 5 (resp. from  to /) and, in addition, show that RR has a

different type of variance. We argue ugh theory and experiments that the new

iance type gives an additional justification of the superior performance of RR.

Konsta ntin M |shchenk° Ahmed Khaled To go beyond strong convexity, we present several results for non-strongly convex

and non-convex objectives. We show that in all cases, our theory improves upon

xisting literature. Finally, we prove fast convergence of the Shuffle-Once (SO)

goritn, which sffes e daea caly o0ce, s bogoning ofte opticazaton

(KAUST Ph D Student) (KAUST Intel’n -> Ca Itech Ph D) groces. Gut theory for songly comex bjctives gty machesthe koown lower

bounds for both RR and SO and substantiates the cc n practical heuristic of

shuffling once or only a few times. As a byproduct afour. aml_\sls. we also get new.

results for the Incremental Gradient algorithm (1G), which does not shuffle the data
atall.

1 Introduction

‘We study the finite-sum minimization problem

(0]

where each f; : R? — Ris differentiable and smooth, and are particularly interested in the big data
‘machine leaming setting where the number of functions n s large. Thanks to their scalability and

! rements, first-order methods are especially popular in this setting (Bottou et al.
2018). Stochastic first-order algorithms in particular have attracted a lot of attention in the machine
learning community and are often used in combination with various pmucal hellmuts Explaining
these heuristics may lead to further development of stable and effici algorithms. In this
" at beer and sharer heoreical ! caplanaion of con mmgumglv Sinple but noeriously

elusive heuristi: data permutation/shufling.

11 Data permutation

In particular, the goal of our paper is to obtain deeper theoretical understanding of methods for

RA N D O M R E S H U F F LI N G = S
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Random Reshuffling: Simple Analysis With Vast Improvements

Problem: Find Model Which Minimizes
Prediction Loss on Training Data

Loss of model x on ith data

Zfz

’1/_

Training data

{1,2,...,n}
min. —
rERI N

d features/parameters
representing a ML model

) 13 fiw)
i=1

Theorem (Strongly Convex Case) 10°
A new notion: —— SGD
. “shuffling variance” 3 | ™y, —o— IG
Model trained after t data passes learning rate y < % 10 .~ o— Shuffle-once
2 ~ 107
% 2 ‘ 2 2vo p I
E[le - ("] < (1 =) 20 — ¥ 4 2L 0Sbutne o
1% | 10
solution . x o
Strong convexity parameter 10
- Dramatically new proof technique z . -
- Better dependence on n and condition Rajput et al (2020): “Current theoretical 107"
number bounds [for Shuffle-Once] are insufficient
- New notion: shuffling variance to explain this phenomenon, and a new 1072
- Variant Shuffle-Once: tightly matches theoretical breakthrough may be required 0 25 50 75 100 125 150
lower bound of Safran and Shamir (2020) to tackle it.” Data passes

Algorithm: How to Choose the Next Training Data Point to Learn From?

1. Sampling With Replacement, aka Stochastic Gradient Descent (SGD) | -

— YV fi (xk
{il’i27i35i47i5} = {3)2727 153}

2. Sampling Without Replacement, aka Random Reshuffling (RR) -

= ’vaﬂk (CIZ‘

{7-(-1’71—2,71-377-(477(-5} = {47 37 1’ 27 5}

xk—l—l

Example for n = 5:

Example for n = 5:

k) :

unbiased gradient estimator
E [Vin(a*) | &*] = Vf(z*)
) - thousands of papers since 1950s
- well understood

biased gradient estimator

E [Vfm(a®) | 2] # VF(z¥)
a handful of papers only!

not understood

default in deep learning
software

Our Theoretical Rates Significantly Improve on SOTA
(in strongly convex, convex and also nonconvex regimes)

Assumptions p-Strongly Non-Strongly Non-Convex Citation

NL® Uuv®@ Convex Convex
v 4 K2n + ""‘”f - - Ying et al. (2019)
X X K+ B8 LD L G070 - Nagaraj et al. (2019)
X X — — %; + %",Q Nguyen et al. (2020)
v/ v \’;lT" w? \"/E @ — - Nguyen et al. (2020)
X X xy/Gall? - - Ahn and Sra (2020)
v Voo s %%u © - - Ahn et al. (2020)

Vrna. (1)
K+ ™~

NG
kn + Y02

Ln+mU

=372

L. Ly/n(B+VA) .
= I This work
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PAGE: A Simple and Optimal Probabilistic Gradient
Estimator for Nonconvex Optimization

Zhize Li' Hongy Xiangliang Zhang!  Peter Ric
King Abdullah Us sity of Science and Technology (K.
{first.last}Ckaust.edu.sa

Abstract

alio achie
the practical superiority of PAGE.

k . Hongyan Bao
Zhize Li (KAUST PhD Student) Xiangliang Zhang : o= "‘:d = [H S
T Research Scientist) (KAUST Associate Professor) ' s i e 20 7

11 The problem

Motivated by this development, we consider the general optimization problem

min f() o

where f : R - R is a differentiable and possibly nonconvex function. We are interested in functions having.
the finite-sum form

[41]. Moreover, if the number of data samples n
ing case, then f(z) usually is modeled via the online

EcuplF(z,Q)l, @)

1

PAGE: A SIMPLE AND OPTIMAL
PROBABILISTIC GRADIENT ESTIMATOR
FOR NONCONVEX OPTIMIZATION
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PAGE: A Simple and Optimal Probabilistic Gradient Estimator

for Nonconvex Optimization

Problem: Train a ML Model on 1 Machine
Using Minimal # of Data Samples

Learning rate

PAGE

Stochastic gradient estimator
want: g ~ Vf(zF

)

Full gradient
(requires 1 pass
over all data)

Comparison to Existing Results

Table 1: Gradient complexity for finding  satisfying E[|Vf(2)|| < ¢ in nonconvex problems
Training data Loss of model x on ith data a,; k —|_ 1 x k: . k Probabmty of computing the Problem | Assumption Algg ithm or liwer Bound | Gradient complexity
— i Asp. 2 GD [34]
{1, 2., n} ’yg full gradient (should be small) A2 | SVRG [a,éu],scs(i ,2]4]. SVRG+ [21]
n B v
Z LS Vfi(zkh) with probability p e oo
o 7 . ) n+ ¥
k+1 o i—=1 Asp. 2 Q%) ifn<0(k)
mln Z 9 o k 1 V . k+1 V . k th b blt 1 Fint 2) | A:,M:. 2.13 PAGE (thi o ﬂ(ﬂ“.i) e
z) g + |S_k| Z ( fz (x ) _ fz (m )) wi probability —-p e (2) oYih (this paper) ((n+\/7?j) 1)
x E R n iESk Online (3) Asp. 1and 2 SGD [10, 16, 29] o)
nline (3) Asp. 1 and 2 SCSG [24], SVRG+ [27] ob+Er)
PAGE is a biased estimator of the gradient: e ® 1 b L2 S;fo)i? Zl]ii"?ilii”g}” o(+4)
d features/parameters 1« batch §* k k _k—1 k ooy | o vos i i —
def Minibatc Sk {1 2 ... n} E [ — ] Oni Asp. 1and 2 PAGE (this paper) op+4)?
; T) = — iz A xr ,T v X line e i %
e L e ) 5D e gl # V(") e e
Assumptlons: Theorem = # of stochastic We prove that ResNet34
radient evaluations L0 RIS e S
0 fi can be nonconvex PAGE solves the problem using 8 PAGE is "optimal" Ah,,v =
0.9 2
. . Q
a 4 @©
9 f is lower bounded Vn (= in a precise 508
O(n+ 5| datasamples mathematical g
LS & 9 . . w07
€) s “smooth sense, this is the ||K
with either of these two parameter choices: . S 06 :
IVfi(x) = Vi)l < Lillz — yl| Va,y € R? best gradient-type ||E ---- train_SGD
) . £ o0s ---- train_PAGE
S $¥=1 and p= 3 method for solving ||[E test SGD
oy = n 0.4 =
Goal: Find random vector 7> such that ) smooth nonconvex — test_PAGE
9 |Sk| = \/ﬁ and p= 0 100 200 300 400 500 600

E[IV@)]?] <

1++/n

alllaac Ellal] aealy

« ‘.;)), dusizlly pglall

King Abdullah University of

ARTIFICIAL
INITIATIVE

INTELLIGENCE

problems)

#grad/n

Peter Richtarik

Science and Technology




MARINA: Faster Non-Convex Distributed Learning
with Compression
Eduard Gorbunoy Konstantin Burlachenko®  Zhize Li®  Peter Richtdrik’
* Moscow Institute of Physics and Technole a

2 Institute for Information Transmission Problems RAS, Russ
# King Abdullah University of Science and Technology, Kingdom of Saudi Arabia

Abstract

Feb 2021

We develop and analyze MARINA: a new communication efficient, method for non-convex
arning over heterogencous datasets. MARINA employs & no
he compression of gradient
employed in the DIANA
istributed first-ord

5

LG] 1

o ose of all previous first order methods. Further, we
develop and analyze two variants of MARINA: VR-MARINA and PP-MARINA. The first method
is designed for the case when the local loss functions owned i

5vl

Eduard Gorbunov
(KAUST Intern)

Konstantin Burlachenko Zhize Li
(KAUST PhD Student) (KAUST Research Scientist)
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MARINA: Faster Non-convex Distributed Learning

with (Communication) Compression

Problem: Train a ML Model on n Machines

Using Minimal # of Bits Communciated

by the n Workers to the Master

Loss of model x
on data stored
on machine i

Zfz

7=
d features/parameters
representing a ML model

# of machines

min —
R N

) 13 fiw)
i=1

E [Qf(9)] =

MARINA Learning StOChaS“dC fgradif”t ks Comparison to Previous SOTA
€] . .
rate want: ¢* = 13 gF ~ Vf(a) Probability of sending Training resnet18@CIFAR100

=i an uncompressed 107 VR-DIANA (K ~ 0.009D)

k+1 k k vector - VAL DIANAl 008501
L =X —99 ncompreesed (should be small e |
gradient 10- A VR-MARINA (K = 0.086D) g
N T, Q.
. . P ) s =
k+1 Vfi(zk+1) with probability p 3 \ 2
‘ g" + QF (V fi(z**1) — Vf;(z*)) with probability 1—p T o g
[0

Random compression operator

E[|Qf @] < (@ +Dllall®

MARINA uses a biased estimator of the gradient:

E [¢F | 2, 2" 1] £ V(") 107 e

0 500 1000 1500 2000 2500 3000 3500
Communication Rounds

Assumptions:

fi can be nonconvex

Theorem (simplified)
If Qf is the Rand-1 sparsifier, and p = L

Comparison to Existing Results: MARINA is SOTA

[Setup_| Method T

Gitation G feation C Gracle C
d+1’ [Mishchenko
then MARINA solves the problem using [ DIANA JHorvith ¢ L) ol L eern
a 1) FedCOMGATE (1) [Haddadpour et a liw 1w
@ f is lower bounded 1+d/\/n icated bits / FSTEPH, v = Do ot a1y 2020 1 A
communicate Its a -
O 72 hi ‘ MARINA (Alg. 1) Thm. 2.1 & Cor. 2.1 (NEW) Lt SRt
. 1g th” € ks DIANA [Li and Richtdrik, 2020] Llte)vu/n | Lig Lol Ak
fi is “smoo _ ) ) (m Qfﬁw)m 2f3+w)m
P o SOTA' (1)+(5) VR-DIANA [Horvith et al., 2019]
4 . revious ! g : VRMARNA (Alg. 2) [ gy e SR Hw(w ‘/7(.+w)m},f
IVfi(x) = Vil < Lillz —y|] Vo,yeR Mishchenko et al 2019; Horvath et al 2019; Li & R. 2020 W =1 ® G ERE -
— DIANA (3 [[lxﬂshcl;u;:!(?hm i,zz&l‘;]] \+“+142)\/w/n + ke 1+u+..;)\/w/ n HT
A FedCOMGATE (3) [Haddadpour et ;.1', 2020] L #
Goal. Find random vector :,/Ij\ Such that Gradlent Descent DIANA M+ BRI (Alg 2) Thm. 3.2 & Cor. 3.2 (NEW) Liwp/m o e ”‘uéﬁ-*- e
d 1 + d3/2 VR,:\:‘AARQA (Mg 2 Thm. 3.2 & Cor. 3.2 (NEW) Liw/ym Liw/ym 4 Lty
\/ = 2 2 @) n (= ¢ sl
]E ’ | f (x) ‘ | < 2 2 o ) . FedSTEPH [Das et al., 2020] Lo CFaltep o Gt
—_ £ 3 ’ PP-MARINA (Alg. 4) Thm. 4.1 & Cor. 4.1 (NEW) Bl SRl
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