On Stochastic Algorithms in Linear Algebra, Optimization and Machine Learning

Peter Richtárik

King Abdullah University
of Science and Technology

Summer School: "Control, Information and Optimization" Voronovo - June 12, 2018

A System of Linear Equations

m equations with n unknowns

Assumption: The system is consistent (i.e., a solution exists)

Part I Six Ways to Skin a Cat

Robert Mansel Gower and P.R.
[GR'15a]
Randomized Iterative Methods for Linear Systems
SIAM Journal on Matrix Analysis and Applications 36(4):16601690, 2015

1. Relaxation Viewpoint "Sketch and Project"

$$
\|x\|_{B}^{2}=x^{\top} B x
$$

$$
x^{t+1}=\arg \min _{x \in \mathbb{R}^{n}}\left\|x-x^{t}\right\|_{B}^{2}
$$

$$
\text { subject to } \quad S^{\top} A x=S^{\top} b
$$

S = identity matrix convergence in 1 step

$$
\min _{x}\left\{\left\|x-x^{0}\right\|: \quad A x=0\right\}
$$

2. Approximation Viewpoint "Constrain and Approximate"

$$
x^{t+1}=\arg \min _{x \in \mathbb{R}^{n}}\left\|x-x^{*}\right\|_{B}^{2}
$$

subject to $\quad x=x^{t}+B^{-1} A^{\top} S \lambda$
λ is free

3. Geometric Viewpoint "Random Intersect"

(1) $x^{t+1}=\arg \min _{x}\left\|x-x^{t}\right\|_{B} \quad$ subject to $\quad S^{\top} A x=S^{\top} b$
(2) $x^{t+1}=\arg \min _{x}\left\|x-x^{*}\right\|_{B} \quad$ subject to $\quad x=x^{t}+B^{-1} A^{\top} S \lambda$

$$
\left\{x^{t+1}\right\}=\left(x^{*}+\operatorname{Null}\left(S^{\top} A\right)\right) \bigcap\left(x^{t}+\operatorname{Range}\left(B^{-1} A^{\top} S\right)\right)
$$

4. Algebraic Viewpoint "Random Linear Solve"

$x^{t+1}=$ solution in x of the linear system

$$
\begin{gathered}
S^{\top} A x=S^{\top} b \\
x=x^{t}+B^{-1} A^{\top} S \lambda
\end{gathered}
$$

Unknown
Unknown

5. Algebraic Viewpoint "Random Update"

Random Update Vector

$$
x^{t+1}=x^{t}-B^{-1} A^{\top} S\left(S^{\top} A B^{-1} A^{\top} S\right)^{\dagger} S^{\top}\left(A x^{t}-b\right)
$$

Moore-Penrose pseudo-inverse

6. Analytic Viewpoint "Random Fixed Point"

$$
Z:=A^{\top} S\left(S^{\top} A B^{-1} A^{\top} S\right)^{\dagger} S^{\top} A
$$

$$
x^{t+1}-x^{*}=\left(I-B^{-1} Z\right)\left(x^{t}-x^{*}\right)
$$

Random Iteration Matrix

$$
\int_{x^{t+1}}^{x^{t}} x^{*}+\operatorname{Null}\left(S^{T} A\right)
$$

- x^{*}

$$
x^{t}+\operatorname{Range}\left(B^{-1} A^{T} S\right)
$$

$$
\begin{gathered}
\left(B^{-1} Z\right)^{2}=B^{-1} Z \\
\left(I-B^{-1} Z\right)^{2}=I-B^{-1} Z
\end{gathered}
$$

$B^{-1} Z$ projects orthogonally onto Range $\left(B^{-1} A^{\top} S\right)$
$I-B^{-1} Z$ projects orthogonally onto $\operatorname{Null}\left(S^{\top} A\right)$

Part II Stochastic Reformulations

P.R. and Martin Takáč

Stochastic Reformulations of Linear Systems: Algorithms and Convergence Theory arXiv:1706.01108, 2017

Stochastic Reformulations of Linear Systems

$n \times n$ pos def
 $A x=b$

 distribution over $m \times q$ matrices1. Stochastic Optimization
2. Stochastic Linear System
3. Stochastic Fixed Point
4. Probabilistic Intersection

Example: $B=$ identity
$\mathcal{D}=$ uniform over e_{1}, \ldots, e_{m} (unit basis vectors in \mathbb{R}^{m})

Theorem

a) These 4 problems have the same solution sets
b) Necessary \& sufficient conditions for the solution set to be equal to $\{x: A x=b\}$

Reformulation 1:
 Stochastic Optimization

Minimize $f(x) \stackrel{\text { def }}{=} \mathbf{E}_{S \sim \mathcal{D}}\left[f_{S}(x)\right]$

$$
f_{S}(x)=\frac{1}{2}\left\|x-\Pi_{\mathcal{L}_{S}}^{B}(x)\right\|_{B}^{2}=\frac{1}{2}(A x-b)^{\top} H(A x-b)
$$

$$
\mathcal{L}_{S}=\left\{x: S^{\top} A x=S^{\top} b\right\}
$$

$$
H=S\left(S^{\top} A B^{-1} A^{\top} S\right)^{\dagger} S^{\top}
$$

Reformulation 2: Stochastic Linear System

Instead of $A x=b$ we solve the preconditioned system:

$$
H=S\left(S^{\top} A B^{-1} A^{\top} S\right)^{\dagger} S^{\top}
$$

$$
\text { Solve } B^{-1} A^{\top} \mathbf{E}_{S \sim \mathcal{D}}[H] A x=B^{-1} A^{\top} \mathbf{E}_{S \sim \mathcal{D}}[H] b
$$

preconditioner
Instead of $B^{-1} A^{\top} \mathbf{E}[H] A$ we have access to $B^{-1} A^{\top} H A$

Unbiased estimate of the preconditioner

Reformulation 3:

Stochastic Fixed Point Problem

$$
\text { Solve } x=\mathbf{E}_{S \sim \mathcal{D}}\left[\Pi_{\mathcal{L}_{S}}^{B}(x)\right]
$$

Projection in B-norm onto $\mathcal{L}_{S}=\left\{x: S^{\top} A x=S^{\top} b\right\}$

Reformulation 4:
 Probabilistic Intersection Problem

Find $x \in \mathbb{R}^{n}$ such that $\mathbf{P}\left(x \in \mathcal{L}_{S}\right)=1$

$$
\mathcal{L}_{S}=\left\{x: S^{\top} A x=S^{\top} b\right\}
$$

Sketched system
S discrete

$$
\left\{x: \mathbf{P}\left(x \in \mathcal{L}_{S}\right)=1\right\}=\bigcap_{S} \mathcal{L}_{S}
$$

Part III
 Randomized Algorithms

Viewpoint 1:
 Stochastic Optimization

Stochastic Gradient Descent

A key method in machine learning

Stochastic "Newton" Descent

Stochastic Proximal Point Method

Viewpoint 3: Stochastic Fixed Point Method

Stochastic Fixed Point Method

Stochastic fixed point

mapping

$$
x^{t+1}=\omega \prod_{\mathcal{L}_{S}}^{B}\left(x^{t}\right)+(1-\omega) x^{t}
$$

Relaxation parameter

$$
S \sim \mathcal{D}
$$

Part IV Complexity

Basic Method

Basic Method: Complexity

$$
\mathbf{E}\left[U^{\top} B^{1 / 2}\left(x^{t}-x^{*}\right)\right]=(I-\omega \Lambda)^{t} U^{\top} B^{1 / 2}\left(x^{0}-x^{*}\right)
$$

```
stepsize / relaxation parameter
```

$$
\begin{gathered}
W=B^{-1 / 2} A^{\top} \mathbf{E}_{S \sim \mathcal{D}}[H] A B^{-1 / 2}=U \Lambda U^{\top} \\
H=S\left(S^{\top} A B^{-1} A^{\top} S\right)^{\dagger} S^{\top}
\end{gathered}
$$

Basic Method: Complexity

Convergence of Expected Iterates
$t \geq \frac{1}{\lambda_{\min }^{+}} \log \left(\frac{1}{\epsilon}\right) \quad \stackrel{\omega=1}{\square}\left\|\mathbf{E}\left[x^{t}-x^{*}\right]\right\|_{B}^{2} \leq \epsilon$
$t \geq \frac{\lambda_{\max }}{\lambda^{+}} \log \left(\frac{1}{\epsilon}\right) \stackrel{\omega=1 / \lambda_{\text {max }}}{\square}\left\|\mathbf{E}\left[x^{t}-x^{*}\right]\right\|_{B}^{2} \leq \epsilon$

L2 Convergence
$t \geq \frac{1}{\lambda_{\text {min }}^{+}} \log \left(\frac{1}{\epsilon}\right) \stackrel{\omega=1}{\longmapsto} \mathbf{E}\left[\left\|x^{t}-x^{*}\right\|_{B}^{2}\right] \leq \epsilon$

Parallel Method

Parallel Method

"Run 1 step of the basic method from x^{t} several times independently, and average the results."

> i.i.d.

$$
x^{t+1}=\frac{1}{\tau} \sum_{i=1}^{\tau} \phi_{\omega}\left(x^{t}, S_{i}^{t}\right)
$$

One step of the basic method from x^{t}

Parallel Method: Complexity

L2 Convergence

$$
\begin{array}{cc}
\tau=1 & \tau=+\infty \\
t \geq \frac{1}{\lambda_{\min }^{+}} \log \left(\frac{1}{\epsilon}\right) \quad \text { or } \quad t \geq \frac{\lambda_{\max }}{\lambda_{\min }^{+}} \log \left(\frac{1}{\epsilon}\right)
\end{array}
$$

$$
\mathbf{E}\left[\left\|x^{t}-x^{*}\right\|_{B}^{2}\right] \leq \epsilon
$$

Accelerated Method

Accelerated Method

One step of the basic method from x^{t-1}

Accelerated Method: Complexity

Convergence of Iterates

$$
t \geq \sqrt{\frac{\lambda_{\max }}{\lambda_{\min }^{+}}} \log \left(\frac{1}{\epsilon}\right) \quad \square \mathbf{E}\left[x^{t}-x^{*}\right] \|_{B}^{2} \leq \epsilon
$$

$$
\text { Basic Method depends on } \frac{\lambda_{\max }}{\lambda_{\min }^{+}} \text {! }
$$

Detailed Complexity Results

Alg.	ω	τ	γ	Quantity	Rate	Complexity	Theorem		
1	1	-	-	$\left\\|\mathrm{E}\left[x_{k}-x_{*}\right]\right\\|_{\mathbf{B}}^{2}$	$\left(1-\lambda_{\min }^{+}\right)^{2 k}$	$1 / \lambda_{\min }^{+}$	$4.3,4.4,4.6$		
1	$1 / \lambda_{\max }$	-	-	$\left\\|\mathrm{E}\left[x_{k}-x_{*}\right]\right\\|_{\mathbf{B}}^{2}$	$(1-1 / \zeta)^{2 k}$	ζ	$4.3,4.4,4.6$		
1	$\frac{2}{\lambda_{\min }^{+}+\lambda_{\max }}$	-	-	$\left\\|\mathrm{E}\left[x_{k}-x_{*}\right]\right\\|_{\mathbf{B}}^{2}$	$(1-2 /(\zeta+1))^{2 k}$	ζ	$4.3,4.4,4.6$		
1	1	-	-	$\mathrm{E}\left[\left\\|x_{k}-x_{*}\right\\|_{\mathbf{B}}^{2}\right]$	$\left(1-\lambda_{\min }^{+}\right)^{k}$	$1 / \lambda_{\min }^{+}$	4.8		
1	1	-	-	$\mathrm{E}\left[f\left(x_{k}\right)\right]$	$\left(1-\lambda_{\min }^{+}\right)^{k}$	$1 / \lambda_{\min }^{+}$	4.10		
2	1	τ	-	$\mathrm{E}\left[\left\\|x_{k}-x_{*}\right\\|_{\mathbf{B}}^{2}\right]$	$\left(1-\lambda_{\min }^{+}(2-\xi(\tau))\right)^{k}$		5.1		
2	$1 / \xi(\tau)$	τ	-	$\mathrm{E}\left[\left\\|x_{k}-x_{*}\right\\|_{\mathbf{B}}^{2}\right]$	$\left(1-\frac{\left.\lambda_{\min }^{+}\right)^{k}}{\xi(\tau)}\right)^{k}$	$\xi(\tau) / \lambda_{\min }^{+}$	5.1		
2	$1 / \lambda_{\max }$	∞	-	$\mathrm{E}\left[\left\\|x_{k}-x_{*}\right\\|_{\mathbf{B}}^{2}\right]$	$(1-1 / \zeta)^{k}$	ζ	5.1		
3	1	-	$\frac{2}{1+\sqrt{0.99 \lambda_{\min }^{+}}}$	$\left\\|\mathrm{E}\left[x_{k}-x_{*}\right]\right\\|_{\mathbf{B}}^{2}$	$\left(1-\sqrt{0.99 \lambda_{\min }^{+}}\right)^{2 k}$	$\sqrt{1 / \lambda_{\min }^{+}}$	5.3		
3	$1 / \lambda_{\max }$	-	$\frac{2}{1+\sqrt{0.99 / \zeta}}$	$\left\\|\mathrm{E}\left[x_{k}-x_{*}\right]\right\\|_{\mathbf{B}}^{2}$	$(1-\sqrt{0.99 / \zeta})^{2 k}$	$\sqrt{\zeta}$	5.3		

Table 1: Summary of the main complexity results. In all cases, $x_{*}=\Pi_{\mathcal{L}}^{\mathrm{B}}\left(x_{0}\right)$ (the projection of the starting point onto the solution space of the linear system). "Complexity" refers to the number of iterations needed to drive "Quantity" below some error tolerance $\epsilon>0$ (we suppress a $\log (1 / \epsilon)$ factor in all expressions in the "Complexity" column). In the table we use the following expressions: $\xi(\tau)=\frac{1}{\tau}+\left(1-\frac{1}{\tau}\right) \lambda_{\text {max }}$ and $\zeta=\lambda_{\text {max }} / \lambda_{\text {min }}^{+}$.

Part V
 Experiments

Acceleration Accelerates

More Relaxation Requires More Acceleration

Part VI
 Dual Viewpoint

Robert Mansel Gower and P.R.
[GR'15b]
Stochastic Dual Ascent for Solving Linear Systems arXiv:1512.06890, 2015

Optimization Formulation

Primal Problem

$$
B \succ 0
$$

$$
\begin{array}{cl}
\operatorname{minimize} & P(x):=\frac{1}{2}\|x-c\|_{B}^{2} \\
\text { subject to } & A x=b \\
A \in \mathbb{R}^{m \times n} & x \in \mathbb{R}^{n}
\end{array}
$$

Dual Problem

Unconstrained non-strongly concave quadratic maximization problem

$$
\begin{aligned}
\operatorname{maximize} & D(y):=(b-A c)^{\top} y-\frac{1}{2}\left\|A^{\top} y\right\|_{B^{-1}}^{2} \\
\text { subject to } & y \in \mathbb{R}^{m}
\end{aligned}
$$

Stochastic Dual Ascent

A random $m \times \tau$ matrix drawn i.i.d. in each iteration $S \sim \mathcal{D}$

$$
y^{t+1}=y^{t}+S \lambda^{t}
$$

Moore-Penrose pseudo-inverse of a small $\tau \times \tau$ matrix

$$
\begin{gathered}
\lambda^{t}:=\arg \min _{\lambda \in Q^{t}}\|\lambda\|_{2} \\
Q^{t}:=\arg \max _{\lambda} D\left(y^{t}+S \lambda\right)
\end{gathered}
$$

$$
\lambda^{t}=\left(S^{\top} A B^{-1} A^{\top} S\right)^{\dagger} S^{\top}\left(b-A\left(c+B^{-1} A^{\top} y^{t}\right)\right)
$$

Dual Correspondence Lemma

Lemma (GR'15b)

Affine mapping from \mathbb{R}^{m} to \mathbb{R}^{n}

$$
x(y):=c+B^{-1} A^{\top} y
$$

Primal Method = Linear Image of the Dual Method

$$
x^{t}:=x\left(y^{t}\right)=c+B^{-1} A^{\top} y^{t}
$$

Corresponding primal iterates

Dual iterates produced by SDA

Convergence

Main Assumption

Assumption 2

The matrix
is nonsingular

$$
\mathbf{E}_{S \sim \mathcal{D}}[\underbrace{S\left(S^{\top} A B^{-1} A^{\top} S\right)^{\dagger} S^{\top}}]
$$

$$
H
$$

Complexity
 $\rho:=1-\lambda_{\text {min }}^{+}\left(B^{-1 / 2} A^{\top} \mathbf{E}[H] A B^{-1 / 2}\right)$ of SDA
 $$
U_{0}=\frac{1}{2}\left\|x^{0}-x^{*}\right\|_{B}^{2}
$$

Theorem (GR'15b)
Primal iterates:
$\mathbf{E}\left[\frac{1}{2}\left\|x^{t}-x^{*}\right\|_{B}^{2}\right] \leq \rho^{t} U_{0}$

Residual:

$$
\mathbf{E}\left[\left\|A x^{t}-b\right\|_{B}\right] \leq \rho^{t / 2}\|A\|_{B} \sqrt{2 \times U_{0}}
$$

Dual error:

$$
\mathbf{E}\left[O P T-D\left(y^{t}\right)\right] \leq \rho^{t} U_{0}
$$

Primal error: $\quad \mathbf{E}\left[P\left(x^{t}\right)-O P T\right] \leq \rho^{t} U_{0}+2 \rho^{t / 2} \sqrt{O P T \times U_{0}}$

Duality gap: $\quad \mathbf{E}\left[P\left(x^{t}\right)-D\left(y^{t}\right)\right] \leq 2 \rho^{t} U_{0}+2 \rho^{t / 2} \sqrt{O P T \times U_{0}}$

The Rate: Lower and Upper Bounds

$$
\boldsymbol{\operatorname { R a n k }}\left(S^{\top} A\right)=\operatorname{dim}\left(\boldsymbol{\operatorname { R a n g e }}\left(B^{-1} A^{\top} S\right)\right)=\operatorname{Tr}\left(B^{-1} Z\right)
$$

Theorem [RG'15ab]

$$
0 \leq 1-\frac{\operatorname{Rank}\left(S^{\top} A\right)}{\operatorname{Rank}(A)} \leq \rho<1
$$

$\rho \leq 1$ always
$\rho<1$ if Assumption 2 holds

Insight: The lower bound is good when:
i) the dimension of the search space in the "constrain and approximate" viewpoint is large, ii) the rank of A is small

Part VII Conclusion

Contributions

- 4 Equivalent stochastic reformulations of a linear system
- Stochastic optimization
- Stochastic fixed point problem
- Stochastic linear system
- Probabilistic intersection
- 3 Algorithms
- Basic (SGD, stochastic Newton method, stochastic fixed point method, stochastic proximal point method, stochastic projection method, ...)
- Parallel
- Accelerated
- Iteration complexity guarantees for various measures of success
- Expected iterates (closed form)
- L1 / L2 convergence
- Convergence of f; ergodic ...

Related Work

Basic method with unit stepsize and full rank A

Robert Mansel Gower and P.R.
Randomized Iterative Methods for Linear Systems
SIAM J. Matrix Analysis \& Applications 36(4):1660-1690, 2015

- 2017 IMA Fox Prize (2 ${ }^{\text {nd }}$ Prize) in Numerical Analysis
- Most downloaded SIMAX paper

Removal of full rank assumption + duality

Robert Mansel Gower and P.R.
Stochastic Dual Ascent for Solving Linear Systems
arXiv:1512.06890, 2015

Inverting matrices \& connection to Quasi-Newton updates

Robert Mansel Gower and P.R.
Randomized Quasi-Newton Methods are Linearly Convergent Matrix Inversion Algorithms arXiv:1602.01768, 2016

Computing the pseudoinverse

Robert Mansel Gower and P.R.
Linearly Convergent Randomized Iterative Methods for Computing the Pseudoinverse arXiv:1612.06255, 2016

Application in machine learning

Related Work

Stochastic Reformulations

P.R. and Martin Takáč.

Stochastic Reformulations of Linear Systems: Algorithms and Convergence Theory arXiv:1706.01108, 2017

+ Polyak Momentum
Nicolas Loizou and P.R.
Momentum and Stochastic Momentum for Stochastic Gradient, Newton, Proximal Point and Subspace Descent Methods arXiv:1712.09677, 2017

Basic method with unit stepsize and full rank A

Dmitry Kovalev, Eduard Gorbunov, Elnur Gasanov and P.R.

POSTER

 Stochastic Spectral and Conjugate Descent Methods arXiv:1802.03703, 2018$1^{\text {st }}$ acceleration of BFGS matrix update rules

Robert M. Gower, Filip Hanzely, P.R. and Sebastian Stich
Accelerated Stochastic Matrix Inversion: General Theory and Speeding up BFGS
Rules for Faster Second-Order Optimization
arXiv:1802.04079, 2018
Convex Feasibility

Ion Necoara, Andrei Patrascu and P.R.
Randomized Projection Methods for Convex Feasibility Problems: Conditioning and Convergence Rates arXiv:1801.04873, 2018

Extra Material: Special Cases

Special Case 1:
 Randomized Kaczmarz Method

Randomized Kaczmarz (RK) Method

M. S. Kaczmarz. Angenaherte Auflosung von Systemen linearer Gleichungen, Bulletin International de l'Académie Polonaise des Sciences et des Lettres. Classe des Sciences Mathématiques et Naturelles. Série A, Sciences Mathématiques 35, pp. 355-357, 1937

Kaczmarz method (1937)
T. Strohmer and R. Vershynin. A Randomized Kaczmarz Algorithm with Exponential

Convergence. Journal of Fourier Analysis and Applications 15(2), pp. 262-278, 2009

RK arises as a special case for parameters B, S set as follows:

$$
B=I \quad S=e^{i}=(0, \ldots, 0,1,0, \ldots, 0) \text { with probability } p_{i}
$$

$$
x^{t+1}=x^{t}-\frac{A_{i:} x^{t}-b_{i}}{\left\|A_{i:}\right\|_{2}^{2}}\left(A_{i:}\right)^{T}
$$

$$
\text { RK was analyzed for } p_{i}=\frac{\left\|A_{i}:\right\|^{2}}{\|A\|_{F}^{2}}
$$

RK: Derivation and Rate

General Method

$$
x^{t+1}=x^{t}-\left[\begin{array}{ll}
B^{-1} A^{T} S \\
\end{array}\right.
$$

Special Choice of Parameters

$$
\mathbf{P (S = e ^ { i }) = p _ { i }}>\begin{gathered}
B=I \\
S=e^{i}
\end{gathered} \quad x^{t+1}=x^{t} A A_{i} A_{2}
$$

Complexity Rate

$$
p_{i}=\frac{\left\|A_{i:}\right\|^{2}}{\|A\|_{F}^{2}} \square \quad \mathbf{E}\left[\left\|x^{t}-x^{*}\right\|_{2}^{2}\right] \leq\left(1-\frac{\lambda_{\min }\left(A^{T} A\right)}{\|A\|_{F}^{2}}\right)^{t}\left\|x^{0}-x^{*}\right\|_{2}^{2}
$$

RK = SGD with a "smart" stepsize

$$
\begin{gathered}
f(x)=\sum_{i=1}^{m} p_{i} f_{i}(x)=\mathbf{E}_{i}\left[f_{i}(x)\right] \\
f_{i}(x)=\frac{1}{2 p_{i}}\left(A_{i:} x-b_{i}\right)^{2}
\end{gathered}
$$

$$
x^{t+1}=x^{t}-\frac{A_{i:} x^{t}-b_{i}^{i}}{\left\|A_{i:}:\right\|_{2}^{2}}\left(A_{i:}\right)^{T}
$$

$$
\begin{aligned}
x^{t+1} & =x^{t}-h^{t} \nabla f_{i}\left(x^{t}\right) \\
& =x^{t}-\frac{h^{t}}{p_{i}}\left(A_{i:} x^{t}-b_{i}\right)_{(}^{\top}\left(A_{i:}\right)^{T}
\end{aligned}
$$

RK is equivalent to applying SGD with a specific (smart!) constant stepsize!

$$
\left.x^{t+1}=\arg \min _{x \in \mathbb{R}^{n}}\left\|x-x^{*}\right\|_{2}^{2} \quad \text { s.t. } \quad x=x^{t}+\underline{y} A_{i:}\right)^{T}, \quad y \in \mathbb{R}
$$

Application: Average Consensus

$$
\begin{align*}
& \min _{x \in \mathbb{R}^{4}} \frac{1}{2}\|x-c\|_{2}^{2} \\
& \text { subject to } A x=0 \\
& A=\left(\begin{array}{cccc}
1 & -1 & 0 & 0 \\
0 & 1 & -1 & 0 \\
0 & 1 & 0 & -1
\end{array}\right)
\end{align*}
$$

Insight: Randomized Kaczmarz = Randomized Gossip Now also have: dual interpretation, block variants, ...

Application: Average Consensus

$$
\begin{aligned}
& \min _{x \in \mathbb{R}^{4}} \frac{1}{2}\|x-c\|_{2}^{2} \\
& \text { subject to } A x=0 \\
& A=\left(\begin{array}{cccc}
1 & -1 & 0 & 0 \\
0 & 1 & -1 & 0 \\
0 & 1 & 0 & -1
\end{array}\right)
\end{aligned}
$$

Insight: Randomized Kaczmarz = Randomized Gossip Now also have: dual interpretation, block variants, ...

Application: Average Consensus

$$
\begin{align*}
& \min _{x \in \mathbb{R}^{4}} \frac{1}{2}\|x-c\|_{2}^{2} \\
& \text { subject to } A x=0 \\
& A=\left(\begin{array}{cccc}
1 & -1 & 0 & 0 \\
0 & 1 & -1 & 0 \\
0 & 1 & 0 & -1
\end{array}\right)<17.5
\end{align*}
$$

Insight: Randomized Kaczmarz = Randomized Gossip Now also have: dual interpretation, block variants, ...

Application: Average Consensus

$$
\begin{aligned}
& \min _{x \in \mathbb{R}^{4}} \frac{1}{2}\|x-c\|_{2}^{2} \\
& \text { subject to } A x=0 \\
& A=\left(\begin{array}{cccc}
1 & -1 & 0 & 0 \\
0 & 1 & -1 & 0 \\
0 & 1 & 0 & -1
\end{array}\right)
\end{aligned}
$$

Insight: Randomized Kaczmarz = Randomized Gossip Now also have: dual interpretation, block variants, ...

RK: Further Reading

D. Needell. Randomized Kaczmarz solver for noisy linear systems. BIT 50 (2), pp. 395-403, 2010

D. Needell and J. Tropp. Paved with good intentions: analyzis of a randomized block Kaczmarz method. Linear Algebra and its
Applications 441, pp. 199-221, 2012
D. Needell, N. Srebro and R. Ward. Stochastic gradient descent, weighted sampling and the randomized Kaczmarz algorithm. Mathematical Programming, 2015 (arXiv:1310.5715)
A. Ramdas. Rows vs Columns for Linear Systems of Equations Randomized Kaczmarz or Coordinate Descent? arXiv:1406.5295, 2014

Special Case 2:
 Randomized Coordinate Descent

Randomized Coordinate Descent in 2D

Randomized Coordinate Descent in 2D

Randomized Coordinate Descent in 2D

Randomized Coordinate Descent in 2D

Randomized Coordinate Descent in 2D

Randomized Coordinate Descent in 2D

Randomized Coordinate Descent in 2D

Randomized Coordinate Descent in 2D

Randomized Coordinate Descent (RCD)

$$
\begin{aligned}
\min _{x \in \mathbb{R}^{n}} & {\left[f(x)=\frac{1}{2} x^{T} A x-b^{T} x\right] } \\
& x^{*}=A^{-1} b \quad \text { Assume: Positive definite }
\end{aligned}
$$

RCD arises as a special case for parameters B, S set as follows:

$$
B=A \quad S=e^{i}=(0, \ldots, 0,1,0, \ldots, 0) \text { with probability } p_{i}
$$

Recall: In RK we had $B=I$

$$
x^{t+1}=x^{t}-\frac{\left(A_{i:}\right)^{T} x^{t}-b_{i}}{A_{i i}} e^{i}
$$

$$
\mathrm{RCD} \text { was analyzed for } p_{i}=\frac{A_{i i}}{\operatorname{Tr}(A)}
$$

RCD: Derivation and Rate

General Method

$$
x^{t+1}=x^{t}-\left[\begin{array}{ll}
B^{-1} A^{T} S \\
i
\end{array}\right.
$$

Special Choice of Parameters

Complexity Rate

$$
p_{i}=\frac{A_{i i}}{\operatorname{Tr}(A)} \quad \square \mathbf{E}\left[\left\|x^{t}-x^{*}\right\|_{A}^{2}\right] \leq\left(1-\frac{\lambda_{\min }(A)}{\operatorname{Tr}(A)}\right)^{t}\left\|x^{0}-x^{*}\right\|_{A}^{2}
$$

RCD: "Standard" Optimization Form

Yurii Nesterov. Efficiency of coordinate descent methods on huge-scale optimization problems. SIAM J. on Optimization, 22(2):341-362, 2012 (CORE Discussion Paper 2010/2)

Nesterov considered the problem:

Convex and smooth

Nesterov assumed that the following inequality holds for $\quad f\left(x+h e^{i}\right) \leq f(x)+\nabla_{i} f(x) h+\frac{L_{i}}{2} h^{2}$ all x, h and i :

Given a current iterate x, choosing h by minimizing the RHS gives:

Nesterov's RCD method:

$$
x^{t+1}=x^{t}-\frac{1}{L_{i}} \nabla_{i} f\left(x^{t}\right) e^{i}
$$

We recover RCD as we have seen it:

$$
x^{t+1}=x^{t}-\frac{\left(A_{i:}\right)^{T} x^{t}-b_{i}}{A_{i i}} e^{i}
$$

Experiment 1

Machine: laptop

Problem: logistic regression, $n=522,911, d=54$

Logistic Regression: Laptop

Data $=\operatorname{cov} 1, \quad n=522,911, \quad \lambda=10^{-6}$

Experiment 2

Machine: 128 nodes of Hector Supercomputer (4096 cores)

Problem: LASSO, $n=1$ billion, $d=0.5$ billion, 3 TB

P.R. and Martin Takáč. Distributed coordinate descent for learning with big data. Journal of Machine Learning Research 17, 2016 (arXiv:1310.2059, 2013)

LASSO: 3TB data + 128 nodes

Experiment 3

Machine: 128 nodes of Archer Supercomputer

Problem: LASSO, $n=5$ million, $d=50$ billion, 5 TB ($60,000 \mathrm{nnz}$ per row of A)

Olivier Fercoq, Zheng Qu, P.R. and Martin Takáč. Fast distributed coordinate descent for minimizing non-strongly convex losses. In 2014 IEEE Int. Workshop on Machine Learning for Signal Proc, 2014

LASSO: 5 TB data ($d=50$ billion) 128 nodes

Special Case 3:
 Randomized Newton Method

Randomized Newton (RN)

$$
\begin{gathered}
\min _{x \in \mathbb{R}^{n}}\left[f(x)=\frac{1}{2} x^{T} A x-b^{T} x\right] \\
x^{*}=A^{-1} b \quad \text { Assume: Positive definite }
\end{gathered}
$$

RN arises as a special case for parameters B, S set as follows:

$$
\begin{aligned}
& B=A \quad S=I_{: C} \text { with probability } p_{C} \\
& p_{C} \geq 0 \quad \forall C \subseteq\{1, \ldots, n\} \sum_{C \subseteq\{1, \ldots, n\}} p_{C}=1
\end{aligned}
$$

RCD is special case with $p_{C}=0$ whenever $|C| \neq 1$

RN: Derivation

General Method

$$
x^{t+1}=x^{t}-\underset{i}{B^{-1} A^{T} S} \mid
$$

Special Choice of Parameters $\quad B=A$

This method minimizes f exactly in a random subspace spanned by the coordinates belonging to C

Experiment 4

Machine: laptop

Problem: Ridge Regression, $n=8124, d=112$

Zheng Qu, P.R., Martin Takáč and Olivier Fercoq, SDNA: Stochastic Dual Newton Ascent for Empirical Risk Minimization. To appear in ICML, 2016

Special Case 4: Gaussian Descent

Gaussian Descent

General Method

$$
x^{t+1}=x^{t}-\left[\begin{array}{ll}
B^{-1} A^{T} S \\
S
\end{array}\right.
$$

Special Choice of Parameters

$$
S \sim N(0, \Sigma) \quad \square x^{t+1}=x^{t}-\frac{S^{T}\left(A x^{t}-b\right)}{S^{T} A B-1} A^{-1} A^{-1}-T^{T} S
$$

Positive definite covariance matrix
Complexity Rate

$$
\mathbf{E}\left[\left\|x^{t}-x^{*}\right\|_{B}^{2}\right] \leq \rho^{t}\left\|x^{0}-x^{*}\right\|_{B}^{2}
$$

Gaussian Descent: The Rate

Lemma [GR'15a]

$$
\mathbf{E}\left[\frac{\xi \xi^{T}}{\|\xi\|_{2}^{2}}\right] \succeq \frac{2}{\pi} \frac{\Omega}{\operatorname{Tr}(\Omega)}
$$

$$
\rho \leq 1-\frac{2}{\pi} \frac{\lambda_{\min }(\Omega)}{\operatorname{Tr}(\Omega)}
$$

This follows from the general lower

Gaussian Descent: Further Reading

Yurii Nesterov. Random gradient-free minimization of convex functions. CORE Discussion Paper \# 2011/1, 2011
S. U. Stitch, C. L. Muller and G. Gartner. Optimization of convex functions with random pursuit. SIAM Journal on Optimization 23 (2), pp. 1284-1309, 2014
S. U. Stitch. Convex optimization with random pursuit. PhD Thesis, ETH Zurich, 2014

Extra Material: Importance Sampling

Importance Sampling

Importance Sampling

Assume that S is discrete:

$$
S=S_{i} \quad \text { with probability } \quad p_{i} \quad(i=1, \ldots, r)
$$

Question

Consider S_{1}, \ldots, S_{r} fixed. How to choose the probabilities p_{1}, \ldots, p_{r} which optimize the convergence rate $\rho=1-\lambda_{\min }\left(B^{-1} \mathbf{E}[Z]\right)$?

$$
\max _{p}\left\{\lambda_{\min }\left(B^{-1} \mathbf{E}[Z]\right) \quad \text { subject to } \quad \sum_{i=1}^{r} p_{i}=1, p \geq 0\right\}
$$

- Can be reformulated as an SDP (Semidefinite Program)
- Leads to different probabilities than those

$$
\text { subject to } \sum_{i=1}^{r} p_{i}\left(V_{i}\left(V_{i}^{T} V_{i}\right)^{\dagger} V_{i}^{T}\right) \succeq t \cdot I,
$$ proposed for RK and RCD!

$$
V_{i}=B^{-1 / 2} A^{T} S_{i}
$$

$$
p \geq 0, \quad \sum_{i=1}^{r} p_{i}=1
$$

RCD: Optimal Probabilities Can Lead to a Remarkable Improvement

	Rate for convenient (standard) probabilities		Rate for optimal probabilities (solving SDP)

RK: Convenient vs Optimal

(a) liver-disorders-popt-k

(b) rand $(500,100)$

RCD: Convenient vs Optimal

(a) aloi

(c) liver-disorders-ridge

(b) covtype.libsvm. binary

(d) mushrooms-ridge-opt

Experiments

(a) rand $(m=1,000 ; n=500)$

(b) sprandn $(m=1,000 ; n=500)$

