Big Data Optimization: Randomized lock-free methods for minimizing partially separable convex functions

Peter Richtárik

School of Mathematics The University of Edinburgh

Joint work with Martin Takáč (Edinburgh)

Les Houches \diamond January 11, 2013

Lock-Free (Asynchronous) Updates

Between the time when x is read by any given processor and an update is computed and applied to x by it, other processors apply their updates.

 $x_6 \leftarrow x_5 + update(x_3)$

Other processors

Viewpoint of a single processor

Generic Parallel Lock-Free Algorithm

In general:

$$x_{j+1} = x_j + update(x_{r(j)})$$

r(j) = index of iterate current at reading time
 j = index of iterate current at writing time

Assumption:

$$j-r(j) \leq \tau$$

$$au+1pprox\#$$
 processors

・ロト ・回ト ・ヨト ・ヨト

The Problem and Its Structure

minimize
$$_{x \in \mathbf{R}^{|V|}} [f(x) \equiv \sum_{e \in E} f_e(x)]$$
 (OPT)

- ▶ Set of vertices/coordinates: V ($x = (x_v, v \in V)$, dim x = |V|)
- Set of edges: $E \subset 2^V$
- Set of blocks: B (a collection of sets forming a partition of V)
- ▶ Assumption: f_e depends on x_v , $v \in e$, only

Example (convex $f : \mathbb{R}^5 \to \mathbb{R}$):

$$f(x) = \underbrace{7(x_1 + x_3)^2}_{f_{e_1}(x)} + \underbrace{5(x_2 - x_3 + x_4)^2}_{f_{e_2}(x)} + \underbrace{(x_4 - x_5)^2}_{f_{e_3}(x)}$$
$$V = \{1, 2, 3, 4, 5\}, \quad |V| = 5, \quad e_1 = \{1, 3\}, \quad e_2 = \{2, 3, 4\}, \quad e_3 = \{4, 5\}$$

Applications

 structured stochastic optimization (via Sample Average Approximation)

◆□ → ◆□ → ◆注 → ◆注 → □ □

- learning
- sparse least-squares
- sparse SVMs, matrix completion, graph cuts (see Niu-Recht-Ré-Wright (2011))
- truss topology design
- optimal statistical designs

PART 1:

LOCK-FREE HYBRID SGD/RCD METHODS

based on:

P. R. and M. Takáč, Lock-free randomized first order methods, manuscript, 2013.

<ロ><合><合><き><合><き><き><き><き><き><き><き><うへの 6/30

Problem-Specific Constants

function	definition	average	maximum
Edge-Vertex Degree			
(# vertices incident with an edge)	$ \omega_e = e = \{v \in V : v \in e\} $	$\overline{\omega}$	ω'
(relevant if $ B = V $)			
Edge-Block Degree		_	
(# blocks incident with an edge)	$\sigma_e = \{b \in B : b \cap e \neq \emptyset\} $	σ	σ'
(relevant if $ B > 1$)			
Vertex-Edge Degree		_	
(# edges incident with a vertex)	$\delta_{v} = \{e \in E : v \in e\} $	$\overline{\delta}$	δ'
(not needed!)			
Edge-Edge Degree		_	
(# edges incident with an edge)	$\rho_e = \{e' \in E : e' \cap e \neq \emptyset\}$	ρ	ho'
(relevant if $ E > 1$)			

Remarks:

- ► Our results depend on: \$\overline{\sigma}\$ (avg Edge-Block degree) and \$\overline{\rho}\$ (avg Edge-Edge degree)
- ▶ First and second row are identical if |B| = |V| (blocks correspond to vertices/coordinates)

Example

$$A = \begin{bmatrix} A_1^T \\ A_2^T \\ A_3^T \\ A_4^T \end{bmatrix} = \begin{pmatrix} 5 & 0 & -3 \\ 1.5 & 2.1 & 0 \\ 0 & 0 & 6 \\ .4 & 0 & 0 \end{pmatrix} \in \mathbf{R}^{4 \times 3}$$
$$f(x) = \frac{1}{2} ||Ax||_2^2 = \frac{1}{2} \sum_{i=1}^4 (A_i^T x)^2, \quad |E| = 4, \quad |V| = 3$$

Example

$$A = \begin{bmatrix} A_1^T \\ A_2^T \\ A_3^T \\ A_4^T \end{bmatrix} = \begin{pmatrix} 5 & 0 & -3 \\ 1.5 & 2.1 & 0 \\ 0 & 0 & 6 \\ .4 & 0 & 0 \end{pmatrix} \in \mathbf{R}^{4 \times 3}$$
$$(x) = \frac{1}{2} ||Ax||_2^2 = \frac{1}{2} \sum_{i=1}^4 (A_i^T x)^2, \quad |E| = 4, \quad |V| = 3$$

Computation of $\bar{\omega}$ and $\bar{\rho}$:

f

	v_1	<i>v</i> ₂	<i>V</i> 3	ω_{e_i}	$ ho_{e_i}$
e_1	×		×	2	4
e_2	×	×		2	3
e_3			\times	1	2
e_4	\times			1	3
δ_{v_j}	3	1	2	$\bar{\omega} = \frac{2+2+1+1}{4} = 1.5,$	$\bar{\rho} = \frac{4+3+2+3}{4} = 3$

 $\omega_e = |e|, \quad \rho_e = |\{e' \in E : e' \cap e \neq \emptyset\}, \quad \delta_v = |\{e \in E : v \in e\}|$

Algorithm

Iteration j + 1 looks as follows:

$$x_{j+1} = x_j - \gamma |E| \sigma_e \nabla_b f_e(x_{r(j)})$$

Viewpoint of the processor performing this iteration:

- Pick edge $e \in E$, uniformly at random
- Pick block b intersecting edge e, uniformly at random
- Read current x (enough to read x_v for $v \in e$)
- Compute $\nabla_b f_e(x)$
- Apply update: $x \leftarrow x \alpha \nabla_b f_e(x)$ with $\alpha = \gamma |E|\sigma_e$ and $\gamma > 0$
- Do not wait (no synchronization!) and start again!

Easy to show that

$$\mathbf{E}[|E|\sigma_e\nabla_b f_e(x)] = \nabla f(x)$$

Main Result

Setup:

- c = strong convexity parameter of f
- L = Lipschitz constant of ∇f
- $\|\nabla f(x)\|_2 \leq M$ for x visited by the method
- Starting point: $x_0 \in \mathbf{R}^{|V|}$

▶
$$0 < \epsilon < \frac{L}{2} ||x_0 - x_*||_2^2$$

• constant stepsize: $\gamma := \frac{c\epsilon}{(\bar{\sigma} + 2\tau\bar{\rho}/|E|)L^2M^2}$

Main Result

Setup:

- c = strong convexity parameter of f
- $L = \text{Lipschitz constant of } \nabla f$
- $\|\nabla f(x)\|_2 \leq M$ for x visited by the method
- Starting point: $x_0 \in \mathbf{R}^{|V|}$

▶
$$0 < \epsilon < \frac{L}{2} ||x_0 - x_*||_2^2$$

• constant stepsize: $\gamma := \frac{c\epsilon}{(\bar{\sigma}+2\tau\bar{\rho}/|E|)L^2M^2}$

Result: Under the above assumptions, for

$$k \geq \left(\bar{\sigma} + \frac{2\tau\bar{\rho}}{|E|}\right) \frac{LM^2}{c^2\epsilon} \log\left(\frac{L\|x_0 - x_*\|_2^2}{\epsilon} - 1\right),$$

we have

$$\min_{0\leq j\leq k} \mathbf{E}\{f(x_j)-f_*\}\leq \epsilon.$$

Special Cases

special case	lock-free parallel version of	Λ
E = 1	Randomized Block Coordinate Descent	$ B + \frac{2\tau}{ E }$
B = 1	Incremental Gradient Descent (Hogwild! as implemented)	$1 + \frac{2\tau\bar{\rho}}{ E }$
B = V	RAINCODE: RAndomized INcremental COordinate DEscent (Hogwild! as analyzed)	$\bar{\omega} + \frac{2\tau\bar{\rho}}{ E }$
E = B =1	Gradient Descent	1+2 au
		EN E 99

Analysis via a New Recurrence

Let
$$a_j = \frac{1}{2} \mathbf{E}[||x_j - x_*||^2]$$

Nemirovski-Juditsky-Lan-Shapiro:

$$a_{j+1} \leq (1-2c\gamma_j)a_j + rac{1}{2}\gamma_j^2M^2$$

Niu-Recht-Ré-Wright (Hogwild!):

$$\begin{aligned} \mathbf{a}_{j+1} &\leq (1 - c\gamma)\mathbf{a}_j + \gamma^2 (\sqrt{2}c\omega' M\tau(\delta')^{1/2}) \mathbf{a}_j^{1/2} + \frac{1}{2}\gamma^2 M^2 Q, \\ \text{where} \quad Q &= \omega' + 2\tau \frac{\rho'}{|E|} + 4\omega' \frac{\rho'}{|E|} \tau + 2\tau^2 (\omega')^2 (\delta')^{1/2} \end{aligned}$$

R.-Takáč:

$$m{a}_{j+1} \leq (1-2c\gamma)m{a}_j + rac{1}{2}\gamma^2(ar{\sigma}+2 aurac{ar{
ho}}{|ar{E}|})M^2$$

↓ ロ ト ↓ 部 ト ↓ 差 ト ↓ 差 り へ ペ 12/30

Parallelization Speedup Factor

$$\mathsf{PSF} = \frac{\Lambda \text{ of serial version}}{(\Lambda \text{ of parallel version})/\tau} = \frac{\bar{\sigma}}{(\bar{\sigma} + 2\tau \frac{\bar{\rho}}{|E|})/\tau} = \left| \frac{1}{\frac{1}{\tau} + \frac{2\bar{\rho}}{\bar{\sigma}|E|}} \right|$$

Parallelization Speedup Factor

$$\mathsf{PSF} = \frac{\Lambda \text{ of serial version}}{(\Lambda \text{ of parallel version})/\tau} = \frac{\bar{\sigma}}{(\bar{\sigma} + 2\tau \frac{\bar{\rho}}{|E|})/\tau} = \left| \frac{1}{\frac{1}{\tau} + \frac{2\bar{\rho}}{\bar{\sigma}|E|}} \right|$$

Three modes:

• Brute force (many processors; τ very large):

$$\mathsf{PSF} \approx rac{ar{\sigma}|E|}{2ar{
ho}}$$

• Favorable structure $\left(\frac{\bar{\rho}}{\bar{\sigma}|E|} \ll \frac{1}{\tau}; \text{ fixed } \tau\right)$:

 $\mathsf{PSF}\ \approx\tau$

• Special τ $(\tau = \frac{|E|}{\bar{\rho}})$:

$$\mathsf{PSF} = \frac{|E|}{\bar{\rho}} \frac{\bar{\sigma}}{\bar{\sigma} + 2} \approx \tau$$

Improvements vs Hogwild!

If |B| = |V| (blocks = coordinates), then **our method coincides with Hogwild!** (as analyzed in Niu et al), up to stepsize choice:

$$|x_{j+1} = x_j - \gamma | E | \omega_e \nabla_v f_e(x_{r(j)})|$$

Improvements vs Hogwild!

If |B| = |V| (blocks = coordinates), then **our method coincides with Hogwild!** (as analyzed in Niu et al), up to stepsize choice:

$$x_{j+1} = x_j - \gamma |E| \omega_e \nabla_v f_e(x_{r(j)})$$

Niu-Recht-Ré-Wright (Hogwild!, 2011):

$$\Lambda = 4\omega' + 24\tau \frac{\rho'}{|E|} + 24\tau^2 \omega'(\delta')^{1/2}$$

R.-Takáč:

$$\Lambda = \bar{\omega} + 2\tau \frac{\bar{\rho}}{|E|}$$

Improvements vs Hogwild!

If |B| = |V| (blocks = coordinates), then **our method coincides with Hogwild!** (as analyzed in Niu et al), up to stepsize choice:

$$x_{j+1} = x_j - \gamma |E| \omega_e \nabla_v f_e(x_{r(j)})$$

Niu-Recht-Ré-Wright (Hogwild!, 2011):

$$\Lambda = 4\omega' + 24\tau \frac{\rho'}{|\mathcal{E}|} + 24\tau^2 \omega' (\delta')^{1/2}$$

R.-Takáč:

$$\Lambda = \bar{\omega} + 2\tau \frac{\bar{\rho}}{|E|}$$

Advantages of our approach:

- ▶ Dependence on averages and not maxima! $(\omega' \rightarrow \bar{\omega}, \rho' \rightarrow \bar{\rho})$
- Better constants $(4 \rightarrow 1, 24 \rightarrow 2)$
- The third large term is not present (no dependence on τ^2 and δ')
- ► Introduction of blocks (⇒ cover also block coordinate descent, gradient descent, SGD)
- Simpler analysis

Modified Algorithm: Global Reads and Local Writes*

Partition vertices (coordinates) into $\tau + 1$ blocks

$$V = b_1 \cup b_2 \cup \cdots \cup b_{\tau+1}$$

and assign block b_i to processor $i, i = 1, 2, ..., \tau + 1$.

Processor *i* will (asynchronously) do:

▶ Pick edge e ∈ {e' ∈ E : e' ∩ b_i ≠ ∅}, uniformly at random (edge intersecting with block owned by processor i)

Update:

$$x_{j+1} = x_j - \alpha \nabla_{b_i} f_e(x_{r(j)})$$

Pros and cons:

- + good if global reads and local writes are cheap, but global writes are expensive (NUMA = Non Uniform Memory Access)
- do not have an analysis
- * Idea proposed by Ben Recht.

Experiment 1: rcv

size = 1.2 GB, features = |V| = 47,236, training: |E| = 677,399, testing: 20,242

シへで 16/30

Experiment 2

Artificial problem instance:

minimize
$$f(x) = \frac{1}{2} ||Ax||^2 = \sum_{i=1}^{m} \frac{1}{2} (A_i^T x)^2.$$

 $A \in \mathbf{R}^{m \times n}$; m = |E| = 500,000; n = |V| = 50,000

Three methods:

- Synchronous, all = parallel synchronous method with |B| = 1
- Asynchronous, all = parallel asynchronous method with |B| = 1
- ► Asynchronous, block = parallel asynchronous method with |B| = τ (no need for atomic operations ⇒ additional speedup)

We measure elapsed time needed to perform 20m iterations (20 epochs)

Uniform instance: |e| = 10 for all edges

PART 2:

PARALLEL BLOCK COORDINATE DESCENT

based on:

P. R. and M. Takáč, Parallel coordinate descent methods for big data optimization, arXiv:1212:0873, 2012.

◆□ → ◆□ → ◆注 → ◆注 → □ □

Overview

A rich family of synchronous parallel block coordinate descent methods

Overview

- A rich family of synchronous parallel block coordinate descent methods
- Theory and algorithms work for convex composite functions with block-separable regularizer:

minimize:
$$F(x) \equiv \underbrace{\sum_{e \in E} f_e(x)}_{f} + \lambda \underbrace{\sum_{b \in B} \Psi_b(x)}_{\Psi}.$$

- Decomposition $f = \sum_{e \in E} f_e$ does not need to be known!
- f: convex or strongly convex (complexity for both)

Overview

- A rich family of synchronous parallel block coordinate descent methods
- Theory and algorithms work for convex composite functions with block-separable regularizer:

minimize:
$$F(x) \equiv \underbrace{\sum_{e \in E} f_e(x)}_{f} + \lambda \underbrace{\sum_{b \in B} \Psi_b(x)}_{\Psi}.$$

- Decomposition $f = \sum_{e \in E} f_e$ does not need to be known!
- f: convex or strongly convex (complexity for both)
- All parameters for running the method according to theory are easy to compute:
 - block Lipschitz constants $L_1, \ldots, L_{|B|}$
 - ► ω′

ACDC: Lock-Free Parallel Coordinate Descent C++ code

http://code.google.com/p/ac-dc/

Can solve a LASSO problem with

- ► $|V| = 10^9$,
- ▶ $|E| = 2 \times 10^9$,
- ▶ ω' = 35,
- on a machine with $\tau = 24$ processors,
- to $\epsilon = 10^{-14}$ accuracy,
- ▶ in 2 hours,
- starting with initial gap $\approx 10^{22}$.

Complexity Results

First complexity analysis of parallel coordinate descent:

$$\mathbf{P}(F(x_k) - F^* \le \epsilon) \ge 1 - p$$

Convex functions:

$$k \geq \left(\frac{2\beta}{\alpha}\right) \frac{\|x_0 - x_*\|_L^2}{\epsilon} \log \frac{F(x_0) - F^*}{\epsilon p}$$

• Strongly convex functions (with parameters μ_f and μ_{Ψ}):

$$k \geq rac{eta + \mu_{\Psi}}{lpha(\mu_f + \mu_{\Psi})} \log rac{F(x_0) - F^*}{\epsilon p}$$

(ロ) (部) (目) (日) (日) (の)

Leading constants matter!

Parallelization Speedup Factors

Closed-form formulas for parallelization speedup factors (PSFs):

- ▶ PSFs are functions of ω' , τ and |B|, and depend on sampling
- Example 1: fully parallel sampling (all blocks are updated, i.e., τ = |B|):

$$PSF = \frac{|B|}{\omega'}.$$

Example 2: *τ*-nice sampling (all subsets of *τ* blocks are chosen with the same probability):

$$PSF = rac{ au}{1 + rac{(\omega'-1)(au-1)}{|B|-1}}$$

A Problem with Billion Variables

LASSO problem:

$$F(x) = \frac{1}{2} ||Ax - b||^2 + \lambda ||x||_1$$

The instance:

► A has

- $|E| = m = 2 \times 10^9$ rows
- $|V| = n = 10^9$ columns (= # of variables)
- exactly 20 nonzeros in each column
- on average 10 and at most 35 nonzeros in each row ($\omega'=$ 35)
- optimal solution x^* has 10^5 nonzeros

$$\blacktriangleright \ \lambda = 1$$

Solver: Asynchronous parallel coordinate descent method with independent nice sampling and $\tau = 1, 8, 16$ cores

Coordinate Updates / n

Iterations / n

Wall Time

ク **へ** (~ 27 / 30

Billion Variables — 1 Core

k/n	$F(x_k) - F^*$	$ x_k _0$	time [hours]
0	$< 10^{23}$	0	0.00
3	$< 10^{21}$	451,016,082	3.20
4	$< 10^{20}$	583,761,145	4.28
6	$< 10^{19}$	537,858,203	6.64
7	$< 10^{17}$	439,384,488	7.87
8	$< 10^{16}$	329,550,078	9.15
9	$< 10^{15}$	229,280,404	10.43
13	$< 10^{13}$	30,256,388	15.35
14	$< 10^{12}$	16,496,768	16.65
15	$< 10^{11}$	8,781,813	17.94
16	$< 10^{10}$	4,580,981	19.23
17	$< 10^{9}$	2,353,277	20.49
19	$< 10^{8}$	627,157	23.06
21	$< 10^{6}$	215,478	25.42
23	$< 10^{5}$	123,788	27.92
26	$< 10^{3}$	102,181	31.71
29	$< 10^{1}$	100,202	35.31
31	$< 10^{0}$	100,032	37.90
32	$< 10^{-1}$	100,010	39.17
33	$< 10^{-2}$	100,002	40.39
34	$< 10^{-13}$	100,000	41.47

28/30

◆□ > ◆□ > ◆臣 > ◆臣 > 善臣 - のへで

Billion Variables — 1, 8 and 16 Cores

	$F(x_k) - F^*$			Elapsed Time		
$(k \cdot \tau)/n$	1 core	8 cores	16 cores	1 core	8 cores	16 cores
0	6.27e+22	6.27e+22	6.27e+22	0.00	0.00	0.00
1	2.24e+22	2.24e+22	2.24e+22	0.89	0.11	0.06
2	2.25e+22	3.64e+19	2.24e+22	1.97	0.27	0.14
3	1.15e+20	1.94e+19	1.37e+20	3.20	0.43	0.21
4	5.25e+19	1.42e+18	8.19e+19	4.28	0.58	0.29
5	1.59e+19	1.05e+17	3.37e+19	5.37	0.73	0.37
6	1.97e+18	1.17e+16	1.33e+19	6.64	0.89	0.45
7	2.40e+16	3.18e+15	8.39e+17	7.87	1.04	0.53
:	:	:	:	:	:	:
26	3.49e+02	4.11e+01	3.68e+03	31.71	3.99	2.02
27	1.92e+02	5.70e+00	7.77e+02	33.00	4.14	2.10
28	1.07e+02	2.14e+00	6.69e+02	34.23	4.30	2.17
29	6.18e+00	2.35e-01	3.64e+01	35.31	4.45	2.25
30	4.31e+00	4.03e-02	2.74e+00	36.60	4.60	2.33
31	6.17e-01	3.50e-02	6.20e-01	37.90	4.75	2.41
32	1.83e-02	2.41e-03	2.34e-01	39.17	4.91	2.48
33	3.80e-03	1.63e-03	1.57e-02	40.39	5.06	2.56
34	7.28e-14	7.46e-14	1.20e-02	41.47	5.21	2.64
35	-	-	1.23e-03	-	-	2.72
36	-	-	3.99e-04	-	-	2.80
37	-	-	7.46e-14	-	-	2.87
				< □ ▶	< (□) > < 三	

References

P. R. and M. Takáč, Lock-free randomized first order methods, arXiv:1301:xxxx.

P. R. and M. Takáč, Parallel coordinate descent methods for big data optimization, arXiv:1212:0873, 2012.

P. R. and M. Takáč, Iteration complexity of block coordinate descent methods for minimizing a composite function, Mathematical Programming, Series A, 2013.

P. R. and M. Takáč, Efficient serial and parallel coordinate descent methods for huge-scale truss topology design, Operations Research Proceedings, 2012.

F. Niu, B. Recht, C. Ré, and S. Wright, Hogwild!: A lock-free approach to parallelizing stochastic gradient descent, NIPS 2011.

A. Nemirovski, A. Juditsky, G. Lan, and A. Shapiro, Robust stochastic approximation approach to stochastic programming, SIAM J. Opt., (4):1574–1609, 2009.

M. Zinkevich, M. Weimer, A. Smola, and L. Li. Parallelized stochastic gradient descent, NIPS 2010.

Yu. Nesterov, Efficiency of coordinate descent methods on huge-scale optimization problems, SIAM J. Opt. 22(2):341–362, 2012.