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Lock-Free (Asynchronous) Updates

Between the time when x is read by any given processor and an update is
computed and applied to x by it, other processors apply their updates.

x6 ← x5 + update(x3)

time

Viewpoint of a single processor

Read current x (x3)
Compute update

Write to current x (x5)

Update x

x4x2

Update x Update x Update x

x5

x6

x7

x3

Other processors
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Generic Parallel Lock-Free Algorithm

In general:

xj+1 = xj + update(xr(j))

I r(j) = index of iterate current at reading time

I j = index of iterate current at writing time

Assumption:

j − r(j) ≤ τ

τ + 1 ≈ # processors
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The Problem and Its Structure

minimize x∈R|V | [f (x) ≡
∑
e∈E

fe(x)] (OPT )

I Set of vertices/coordinates: V (x = (xv , v ∈ V ), dim x = |V |)
I Set of edges: E ⊂ 2V

I Set of blocks: B (a collection of sets forming a partition of V )

I Assumption: fe depends on xv , v ∈ e, only

Example (convex f : R5 → R):

f (x) = 7(x1 + x3)2︸ ︷︷ ︸
fe1

(x)

+ 5(x2 − x3 + x4)2︸ ︷︷ ︸
fe2

(x)

+ (x4 − x5)2︸ ︷︷ ︸
fe3

(x)

V = {1, 2, 3, 4, 5}, |V | = 5, e1 = {1, 3}, e2 = {2, 3, 4}, e3 = {4, 5}
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Applications

I structured stochastic optimization (via Sample Average
Approximation)

I learning

I sparse least-squares

I sparse SVMs, matrix completion, graph cuts (see
Niu-Recht-Ré-Wright (2011))

I truss topology design

I optimal statistical designs
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PART 1:

LOCK-FREE HYBRID SGD/RCD
METHODS

based on:

P. R. and M. Takáč, Lock-free randomized first order methods, manuscript, 2013.
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Problem-Specific Constants

function definition average maximum
Edge-Vertex Degree

(# vertices incident with an edge)

(relevant if |B| = |V |)

ωe = |e| = |{v ∈ V : v ∈ e}| ω̄ ω′

Edge-Block Degree
(# blocks incident with an edge)

(relevant if |B| > 1)

σe = |{b ∈ B : b ∩ e 6= ∅}| σ̄ σ′

Vertex-Edge Degree
(# edges incident with a vertex)

(not needed!)

δv = |{e ∈ E : v ∈ e}| δ̄ δ′

Edge-Edge Degree
(# edges incident with an edge)

(relevant if |E| > 1)

ρe = |{e′ ∈ E : e′ ∩ e 6= ∅} ρ̄ ρ′

Remarks:

I Our results depend on: σ̄ (avg Edge-Block degree) and ρ̄ (avg Edge-Edge
degree)

I First and second row are identical if |B| = |V | (blocks correspond to
vertices/coordinates)
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Example

A =


AT

1

AT
2

AT
3

AT
4

 =


5 0 −3

1.5 2.1 0
0 0 6
.4 0 0

 ∈ R4×3

f (x) = 1
2‖Ax‖

2
2 = 1

2

4∑
i=1

(AT
i x)2, |E | = 4, |V | = 3

Computation of ω̄ and ρ̄:

v1 v2 v3 ωei ρei
e1 × × 2 4
e2 × × 2 3
e3 × 1 2
e4 × 1 3
δvj 3 1 2 ω̄ = 2+2+1+1

4 = 1.5, ρ̄ = 4+3+2+3
4 = 3

ωe = |e|, ρe = |{e′ ∈ E : e′ ∩ e 6= ∅}, δv = |{e ∈ E : v ∈ e}|
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Algorithm

Iteration j + 1 looks as follows:

xj+1 = xj − γ|E |σe∇bfe(xr(j))

Viewpoint of the processor performing this iteration:

I Pick edge e ∈ E , uniformly at random

I Pick block b intersecting edge e, uniformly at random

I Read current x (enough to read xv for v ∈ e)

I Compute ∇bfe(x)

I Apply update: x ← x − α∇bfe(x) with α = γ|E |σe and γ > 0

I Do not wait (no synchronization!) and start again!

Easy to show that
E[|E |σe∇bfe(x)] = ∇f (x)

9 / 30



Main Result

Setup:

I c = strong convexity parameter of f

I L = Lipschitz constant of ∇f
I ‖∇f (x)‖2 ≤ M for x visited by the method

I Starting point: x0 ∈ R|V |

I 0 < ε < L
2‖x0 − x∗‖2

2

I constant stepsize: γ := cε
(σ̄+2τρ̄/|E |)L2M2

Result: Under the above assumptions, for

k ≥
(
σ̄ +

2τ ρ̄

|E |

)
LM2

c2ε
log

(
L‖x0 − x∗‖2

2

ε
− 1

)
,

we have
min

0≤j≤k
E{f (xj)− f∗} ≤ ε.

10 / 30



Main Result

Setup:

I c = strong convexity parameter of f

I L = Lipschitz constant of ∇f
I ‖∇f (x)‖2 ≤ M for x visited by the method

I Starting point: x0 ∈ R|V |

I 0 < ε < L
2‖x0 − x∗‖2

2

I constant stepsize: γ := cε
(σ̄+2τρ̄/|E |)L2M2

Result: Under the above assumptions, for

k ≥
(
σ̄ +

2τ ρ̄

|E |

)
LM2

c2ε
log

(
L‖x0 − x∗‖2

2

ε
− 1

)
,

we have
min

0≤j≤k
E{f (xj)− f∗} ≤ ε.

10 / 30



Special Cases

General result: (σ̄ + 2τ ρ̄
|E | )︸ ︷︷ ︸

Λ

LM2

c2ε
log
(

2L‖x0−x∗‖2

ε
− 1
)

︸ ︷︷ ︸
common to all special cases

special case lock-free parallel version of . . . Λ

|E | = 1 Randomized Block Coordinate Descent |B|+ 2τ
|E |

|B| = 1
Incremental Gradient Descent

(Hogwild! as implemented)
1 + 2τρ̄

|E |

|B| = |V |
RAINCODE: RAndomized INcremental

COordinate DEscent
(Hogwild! as analyzed)

ω̄ + 2τρ̄
|E |

|E | = |B| = 1 Gradient Descent 1 + 2τ
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Analysis via a New Recurrence

Let aj = 1
2 E[‖xj − x∗‖2]

Nemirovski-Juditsky-Lan-Shapiro:

aj+1 ≤ (1− 2cγj)aj + 1
2γ

2
j M

2

Niu-Recht-Ré-Wright (Hogwild!):

aj+1 ≤ (1− cγ)aj + γ2(
√

2cω′Mτ(δ′)1/2)a
1/2
j + 1

2γ
2M2Q,

where Q = ω′ + 2τ ρ′

|E | + 4ω′ ρ
′

|E |τ + 2τ 2(ω′)2(δ′)1/2

R.-Takáč:

aj+1 ≤ (1− 2cγ)aj + 1
2γ

2(σ̄ + 2τ ρ̄
|E | )M

2
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Parallelization Speedup Factor

PSF =
Λ of serial version

(Λ of parallel version)/τ
=

σ̄

(σ̄ + 2τ ρ̄
|E | )/τ

=
1

1
τ + 2ρ̄

σ̄|E |

Three modes:

I Brute force (many processors; τ very large):

PSF ≈ σ̄|E |
2ρ̄

I Favorable structure ( ρ̄
σ̄|E | �

1
τ ; fixed τ):

PSF ≈ τ

I Special τ (τ = |E |
ρ̄ ):

PSF =
|E |
ρ̄

σ̄

σ̄ + 2
≈ τ
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Improvements vs Hogwild!
If |B| = |V | (blocks = coordinates), then our method coincides with
Hogwild! (as analyzed in Niu et al), up to stepsize choice:

xj+1 = xj − γ|E |ωe∇v fe(xr(j))

Niu-Recht-Ré-Wright (Hogwild!, 2011):

Λ = 4ω′ + 24τ
ρ′

|E |
+ 24τ 2ω′(δ′)

1/2

R.-Takáč:

Λ = ω̄ + 2τ
ρ̄

|E |
Advantages of our approach:

I Dependence on averages and not maxima! (ω′ → ω̄, ρ′ → ρ̄)
I Better constants (4→ 1, 24→ 2)
I The third large term is not present (no dependence on τ 2 and δ′)
I Introduction of blocks (⇒ cover also block coordinate descent,

gradient descent, SGD)
I Simpler analysis
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Modified Algorithm: Global Reads and Local Writes∗

Partition vertices (coordinates) into τ + 1 blocks

V = b1 ∪ b2 ∪ · · · ∪ bτ+1

and assign block bi to processor i , i = 1, 2, . . . , τ + 1.

Processor i will (asynchronously) do:

I Pick edge e ∈ {e′ ∈ E : e′ ∩ bi 6= ∅}, uniformly at random
(edge intersecting with block owned by processor i)

I Update:

xj+1 = xj − α∇bi fe(xr(j))

Pros and cons:

I + good if global reads and local writes are cheap, but global writes
are expensive (NUMA = Non Uniform Memory Access)

I - do not have an analysis
∗ Idea proposed by Ben Recht.
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Experiment 1: rcv

size = 1.2 GB, features = |V | = 47,236, training: |E | = 677,399,
testing: 20,242

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

Epoch

T
ra

in
 E

rr
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1 CPU, Asyn.
1 CPU, Syn.
4 CPU, Asyn.
4 CPU, Syn.
16 CPU, Asyn.
16 CPU, Syn.
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Experiment 2

Artificial problem instance:

minimize f (x) = 1
2‖Ax‖

2 =
m∑
i=1

1
2 (AT

i x)2.

A ∈ Rm×n; m = |E | = 500, 000; n = |V | = 50, 000

Three methods:

I Synchronous, all = parallel synchronous method with |B| = 1

I Asynchronous, all = parallel asynchronous method with |B| = 1

I Asynchronous, block = parallel asynchronous method with |B| = τ
(no need for atomic operations ⇒ additional speedup)

We measure elapsed time needed to perform 20m iterations (20 epochs)

17 / 30



Uniform instance: |e| = 10 for all edges

18 / 30



PART 2:

PARALLEL BLOCK COORDINATE
DESCENT

based on:

P. R. and M. Takáč, Parallel coordinate descent methods for big data optimization,

arXiv:1212:0873, 2012.
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Overview

I A rich family of synchronous parallel block coordinate descent
methods

I Theory and algorithms work for convex composite functions with
block-separable regularizer:

minimize: F (x) ≡
∑
e∈E

fe(x)︸ ︷︷ ︸
f

+λ
∑
b∈B

Ψb(x)︸ ︷︷ ︸
Ψ

.

I Decomposition f =
∑

e∈E fe does not need to be known!
I f : convex or strongly convex (complexity for both)

I All parameters for running the method according to theory are easy
to compute:

I block Lipschitz constants L1, . . . , L|B|
I ω′

20 / 30



Overview

I A rich family of synchronous parallel block coordinate descent
methods

I Theory and algorithms work for convex composite functions with
block-separable regularizer:

minimize: F (x) ≡
∑
e∈E

fe(x)︸ ︷︷ ︸
f

+λ
∑
b∈B

Ψb(x)︸ ︷︷ ︸
Ψ

.

I Decomposition f =
∑

e∈E fe does not need to be known!
I f : convex or strongly convex (complexity for both)

I All parameters for running the method according to theory are easy
to compute:

I block Lipschitz constants L1, . . . , L|B|
I ω′

20 / 30



Overview

I A rich family of synchronous parallel block coordinate descent
methods

I Theory and algorithms work for convex composite functions with
block-separable regularizer:

minimize: F (x) ≡
∑
e∈E

fe(x)︸ ︷︷ ︸
f

+λ
∑
b∈B

Ψb(x)︸ ︷︷ ︸
Ψ

.

I Decomposition f =
∑

e∈E fe does not need to be known!
I f : convex or strongly convex (complexity for both)

I All parameters for running the method according to theory are easy
to compute:

I block Lipschitz constants L1, . . . , L|B|
I ω′

20 / 30



ACDC: Lock-Free Parallel Coordinate Descent C++ code

http://code.google.com/p/ac-dc/

Can solve a LASSO problem with

I |V | = 109,

I |E | = 2× 109,

I ω′ = 35,

I on a machine with τ = 24 processors,

I to ε = 10−14 accuracy,

I in 2 hours,

I starting with initial gap ≈ 1022.
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Complexity Results

First complexity analysis of parallel coordinate descent:

P(F (xk)− F ∗ ≤ ε) ≥ 1− p

I Convex functions:

k ≥ ( 2β
α

)
‖x0−x∗‖2

L

ε
log F (x0)−F∗

εp

I Strongly convex functions (with parameters µf and µΨ):

k ≥ β+µΨ

α(µf +µΨ)
log F (x0)−F∗

εp

I Leading constants matter!
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Parallelization Speedup Factors

Closed-form formulas for parallelization speedup factors (PSFs):

I PSFs are functions of ω′, τ and |B|, and depend on sampling

I Example 1: fully parallel sampling (all blocks are updated, i.e.,

τ = |B|):

PSF =
|B |
ω′
.

I Example 2: τ -nice sampling (all subsets of τ blocks are chosen with

the same probability):

PSF =
τ

1 + (ω′−1)(τ−1)
|B|−1

.
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A Problem with Billion Variables

LASSO problem:

F (x) = 1
2‖Ax − b‖2 + λ‖x‖1

The instance:
I A has

I |E | = m = 2× 109 rows
I |V | = n = 109 columns (= # of variables)
I exactly 20 nonzeros in each column
I on average 10 and at most 35 nonzeros in each row (ω′ = 35)

I optimal solution x∗ has 105 nonzeros

I λ = 1

Solver: Asynchronous parallel coordinate descent method with
independent nice sampling and τ = 1, 8, 16 cores
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# Coordinate Updates / n
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# Iterations / n
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Wall Time
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Billion Variables — 1 Core

k/n F (xk )− F∗ ‖xk‖0 time [hours]

0 < 1023 0 0.00
3 < 1021 451,016,082 3.20
4 < 1020 583,761,145 4.28
6 < 1019 537,858,203 6.64
7 < 1017 439,384,488 7.87
8 < 1016 329,550,078 9.15
9 < 1015 229,280,404 10.43

13 < 1013 30,256,388 15.35
14 < 1012 16,496,768 16.65
15 < 1011 8,781,813 17.94
16 < 1010 4,580,981 19.23
17 < 109 2,353,277 20.49
19 < 108 627,157 23.06
21 < 106 215,478 25.42
23 < 105 123,788 27.92
26 < 103 102,181 31.71
29 < 101 100,202 35.31
31 < 100 100,032 37.90
32 < 10−1 100,010 39.17
33 < 10−2 100,002 40.39
34 < 10−13 100,000 41.47
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Billion Variables — 1, 8 and 16 Cores
F (xk )− F∗ Elapsed Time

(k · τ)/n 1 core 8 cores 16 cores 1 core 8 cores 16 cores

0 6.27e+22 6.27e+22 6.27e+22 0.00 0.00 0.00
1 2.24e+22 2.24e+22 2.24e+22 0.89 0.11 0.06
2 2.25e+22 3.64e+19 2.24e+22 1.97 0.27 0.14
3 1.15e+20 1.94e+19 1.37e+20 3.20 0.43 0.21
4 5.25e+19 1.42e+18 8.19e+19 4.28 0.58 0.29
5 1.59e+19 1.05e+17 3.37e+19 5.37 0.73 0.37
6 1.97e+18 1.17e+16 1.33e+19 6.64 0.89 0.45
7 2.40e+16 3.18e+15 8.39e+17 7.87 1.04 0.53
...

...
...

...
...

...
...

26 3.49e+02 4.11e+01 3.68e+03 31.71 3.99 2.02
27 1.92e+02 5.70e+00 7.77e+02 33.00 4.14 2.10
28 1.07e+02 2.14e+00 6.69e+02 34.23 4.30 2.17
29 6.18e+00 2.35e-01 3.64e+01 35.31 4.45 2.25
30 4.31e+00 4.03e-02 2.74e+00 36.60 4.60 2.33
31 6.17e-01 3.50e-02 6.20e-01 37.90 4.75 2.41
32 1.83e-02 2.41e-03 2.34e-01 39.17 4.91 2.48
33 3.80e-03 1.63e-03 1.57e-02 40.39 5.06 2.56
34 7.28e-14 7.46e-14 1.20e-02 41.47 5.21 2.64
35 - - 1.23e-03 - - 2.72
36 - - 3.99e-04 - - 2.80
37 - - 7.46e-14 - - 2.87
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