Big Data Optimization:
 Randomized lock-free methods for minimizing partially separable convex functions

Peter Richtárik
School of Mathematics
The University of Edinburgh

Joint work with Martin Takáč (Edinburgh)
Les Houches ॰ January 11, 2013

Lock-Free (Asynchronous) Updates

Between the time when x is read by any given processor and an update is computed and applied to x by it, other processors apply their updates.

$$
x_{6} \leftarrow x_{5}+\text { update }\left(x_{3}\right)
$$

Other processors

Viewpoint of a single processor

Generic Parallel Lock-Free Algorithm

In general:

$$
x_{j+1}=x_{j}+\text { update }\left(x_{r(j)}\right)
$$

- $r(j)=$ index of iterate current at reading time
- $j=$ index of iterate current at writing time

Assumption:

$$
j-r(j) \leq \tau
$$

$\tau+1 \approx \#$ processors

The Problem and Its Structure

$$
\operatorname{minimize}_{x \in \mathbf{R}^{|v|}}\left[f(x) \equiv \sum_{e \in E} f_{e}(x)\right] \quad(O P T)
$$

- Set of vertices/coordinates: $V\left(x=\left(x_{v}, v \in V\right), \operatorname{dim} x=|V|\right)$
- Set of edges: $E \subset 2^{V}$
- Set of blocks: B (a collection of sets forming a partition of V)
- Assumption: f_{e} depends on $x_{v}, v \in e$, only

Example (convex $f: \mathbf{R}^{5} \rightarrow \mathbf{R}$):

$$
\begin{gathered}
f(x)=\underbrace{7\left(x_{1}+x_{3}\right)^{2}}_{f_{e_{1}}(x)}+\underbrace{5\left(x_{2}-x_{3}+x_{4}\right)^{2}}_{f_{e_{2}}(x)}+\underbrace{\left(x_{4}-x_{5}\right)^{2}}_{f_{e_{3}}(x)} \\
V=\{1,2,3,4,5\}, \quad|V|=5, \quad e_{1}=\{1,3\}, \quad e_{2}=\{2,3,4\}, \quad e_{3}=\{4,5\}
\end{gathered}
$$

Applications

- structured stochastic optimization (via Sample Average Approximation)
- learning
- sparse least-squares
- sparse SVMs, matrix completion, graph cuts (see Niu-Recht-Ré-Wright (2011))
- truss topology design
- optimal statistical designs

PART 1:

LOCK-FREE HYBRID SGD/RCD METHODS

based on:
P. R. and M. Takáč, Lock-free randomized first order methods, manuscript, 2013.

Problem-Specific Constants

function	definition	average	maximum
Edge-Vertex Degree (\# vertices incident with an edge) (relevant if $\|B\|=\|v\|$)	$\omega_{e}=\|e\|=\|\{v \in V: v \in e\}\|$	$\bar{\omega}$	ω^{\prime}
Edge-Block Degree (\# blocks incident with an edge) (releant if $\|B\|>1$ 1)	$\sigma_{e}=\|\{b \in B: b \cap e \neq \emptyset\}\|$	$\bar{\sigma}$	σ^{\prime}
Vertex-Edge Degree (\# edges incident with a vertex) (not needed!)	$\delta_{v}=\|\{e \in E: v \in e\}\|$	$\bar{\delta}$	δ^{\prime}
Edge-Edge Degree (\# edges incident with an edge) (relevant if $\|E\|>1$)	$\rho_{e}=\mid\left\{e^{\prime} \in E: e^{\prime} \cap e \neq \emptyset\right\}$	$\bar{\rho}$	ρ^{\prime}

Remarks:

- Our results depend on: $\bar{\sigma}$ (avg Edge-Block degree) and $\bar{\rho}$ (avg Edge-Edge degree)
- First and second row are identical if $|B|=|V|$ (blocks correspond to vertices/coordinates)

Example

$$
\begin{gathered}
A=\left[\begin{array}{c}
A_{1}^{T} \\
A_{2}^{T} \\
A_{3}^{T} \\
A_{4}^{T}
\end{array}\right]=\left(\begin{array}{ccc}
5 & 0 & -3 \\
1.5 & 2.1 & 0 \\
0 & 0 & 6 \\
.4 & 0 & 0
\end{array}\right) \in \mathbf{R}^{4 \times 3} \\
f(x)=\frac{1}{2}\|A x\|_{2}^{2}=\frac{1}{2} \sum_{i=1}^{4}\left(A_{i}^{T} x\right)^{2}, \quad|E|=4, \quad|V|=3
\end{gathered}
$$

Example

$$
\begin{gathered}
A=\left[\begin{array}{c}
A_{1}^{T} \\
A_{2}^{T} \\
A_{3}^{T} \\
A_{4}^{T}
\end{array}\right]=\left(\begin{array}{ccc}
5 & 0 & -3 \\
1.5 & 2.1 & 0 \\
0 & 0 & 6 \\
.4 & 0 & 0
\end{array}\right) \in \mathbf{R}^{4 \times 3} \\
f(x)=\frac{1}{2}\|A x\|_{2}^{2}=\frac{1}{2} \sum_{i=1}^{4}\left(A_{i}^{T} x\right)^{2}, \quad|E|=4, \quad|V|=3
\end{gathered}
$$

Computation of $\bar{\omega}$ and $\bar{\rho}$:

$$
\begin{array}{c|ccc|cc}
& v_{1} & v_{2} & v_{3} & \omega_{e_{i}} & \rho_{e_{i}} \\
\hline e_{1} & \times & & \times & 2 & 4 \\
e_{2} & \times & \times & & 2 & 3 \\
e_{3} & & & \times & 1 & 2 \\
e_{4} & \times & & & 1 & 3 \\
\hline \delta_{v_{j}} & 3 & 1 & 2 & \bar{\omega}=\frac{2+2+1+1}{4}=1.5, & \bar{\rho}=\frac{4+3+2+3}{4}=3 \\
\\
\omega_{e}=|e|, \quad \rho_{e}=\left|\left\{e^{\prime} \in E: e^{\prime} \cap e \neq \emptyset\right\}, \quad \delta_{v}=|\{e \in E: v \in e\}|\right.
\end{array}
$$

Algorithm

Iteration $j+1$ looks as follows:

$$
x_{j+1}=x_{j}-\gamma|E| \sigma_{e} \nabla_{b} f_{e}\left(x_{r(j)}\right)
$$

Viewpoint of the processor performing this iteration:

- Pick edge $e \in E$, uniformly at random
- Pick block b intersecting edge e, uniformly at random
- Read current x (enough to read x_{v} for $\left.v \in e\right)$
- Compute $\nabla_{b} f_{e}(x)$
- Apply update: $x \leftarrow x-\alpha \nabla_{b} f_{e}(x)$ with $\alpha=\gamma|E| \sigma_{e}$ and $\gamma>0$
- Do not wait (no synchronization!) and start again!

Easy to show that

$$
\mathbf{E}\left[|E| \sigma_{e} \nabla_{b} f_{e}(x)\right]=\nabla f(x)
$$

Main Result

Setup:

- $c=$ strong convexity parameter of f
- $L=$ Lipschitz constant of ∇f
- $\|\nabla f(x)\|_{2} \leq M$ for x visited by the method
- Starting point: $x_{0} \in \mathbf{R}^{|V|}$
- $0<\epsilon<\frac{L}{2}\left\|x_{0}-x_{*}\right\|_{2}^{2}$
- constant stepsize: $\gamma:=\frac{c \epsilon}{\left(\bar{\sigma}+2 \tau \bar{\rho} /|E| L^{2} M^{2}\right.}$

Main Result

Setup:

- $c=$ strong convexity parameter of f
- $L=$ Lipschitz constant of ∇f
- $\|\nabla f(x)\|_{2} \leq M$ for x visited by the method
- Starting point: $x_{0} \in \mathbf{R}^{|V|}$
- $0<\epsilon<\frac{L}{2}\left\|x_{0}-x_{*}\right\|_{2}^{2}$
- constant stepsize: $\gamma:=\frac{c \epsilon}{(\bar{\sigma}+2 \tau \bar{\rho} /|E|) L^{2} M^{2}}$

Result: Under the above assumptions, for

$$
k \geq\left(\bar{\sigma}+\frac{2 \tau \bar{\rho}}{|E|}\right) \frac{L M^{2}}{c^{2} \epsilon} \log \left(\frac{L\left\|x_{0}-x_{*}\right\|_{2}^{2}}{\epsilon}-1\right)
$$

we have

$$
\min _{0 \leq j \leq k} \mathbf{E}\left\{f\left(x_{j}\right)-f_{*}\right\} \leq \epsilon
$$

Special Cases

General result: $\underbrace{\left(\bar{\sigma}+\frac{2 \tau \bar{\rho}}{|E|}\right)}_{\wedge} \underbrace{\frac{L M^{2}}{c^{2}} \log \left(\frac{2 L\left\|x_{0}-x_{*}\right\|_{2}}{\epsilon}-1\right)}_{\text {common to all special cases }}$

special case	lock-free parallel version of ...	\wedge
$\|E\|=1$	Randomized Block Coordinate Descent $\|B\|=1$	$\|B\|+\frac{2 \tau}{\|E\|}$
$\|B\|=\|V\|$	Incremental Gradient Descent (Hogwild! as implemented)	$1+\frac{2 \tau \bar{\rho}}{\|E\|}$
$\|E\|=\|B\|=1$	RAINCODE: RAndomized INcremental COordinate DEscent (Hogwild! as analyzed)	$\bar{\omega}+\frac{2 \tau \bar{\rho}}{\|E\|}$

Analysis via a New Recurrence

Let $a_{j}=\frac{1}{2} \mathbf{E}\left[\left\|x_{j}-x_{*}\right\|^{2}\right]$
Nemirovski-Juditsky-Lan-Shapiro:

$$
a_{j+1} \leq\left(1-2 c \gamma_{j}\right) a_{j}+\frac{1}{2} \gamma_{j}^{2} M^{2}
$$

Niu-Recht-Ré-Wright (Hogwild!):

$$
\begin{gathered}
a_{j+1} \leq(1-c \gamma) a_{j}+\gamma^{2}\left(\sqrt{2} c \omega^{\prime} M \tau\left(\delta^{\prime}\right)^{1 / 2}\right) a_{j}^{1 / 2}+\frac{1}{2} \gamma^{2} M^{2} Q, \\
\text { where } \quad Q=\omega^{\prime}+2 \tau \frac{\rho^{\prime}}{|E|}+4 \omega^{\prime} \frac{\rho^{\prime}}{|E|} \tau+2 \tau^{2}\left(\omega^{\prime}\right)^{2}\left(\delta^{\prime}\right)^{1 / 2}
\end{gathered}
$$

R.-Takáč:

$$
a_{j+1} \leq(1-2 c \gamma) a_{j}+\frac{1}{2} \gamma^{2}\left(\bar{\sigma}+2 \tau \frac{\bar{\rho}}{|E|}\right) M^{2}
$$

Parallelization Speedup Factor

$$
\mathrm{PSF}=\frac{\Lambda \text { of serial version }}{(\Lambda \text { of parallel version }) / \tau}=\frac{\bar{\sigma}}{\left(\bar{\sigma}+2 \tau \frac{\bar{\rho}}{|E|}\right) / \tau}=\frac{1}{\frac{1}{\tau}+\frac{2 \bar{\rho}}{\bar{\sigma}|E|}}
$$

Parallelization Speedup Factor

$$
\mathrm{PSF}=\frac{\Lambda \text { of serial version }}{(\Lambda \text { of parallel version }) / \tau}=\frac{\bar{\sigma}}{\left(\bar{\sigma}+2 \tau \frac{\bar{\rho}}{|E|}\right) / \tau}=\frac{1}{\frac{1}{\tau}+\frac{2 \bar{\rho}}{\bar{\sigma}|E|}}
$$

Three modes:

- Brute force (many processors; τ very large):

$$
\mathrm{PSF} \approx \frac{\bar{\sigma}|E|}{2 \bar{\rho}}
$$

- Favorable structure $\left(\frac{\bar{\rho}}{\bar{\sigma}|E|} \ll \frac{1}{\tau}\right.$; fixed $\left.\tau\right)$:

$$
\text { PSF } \approx \tau
$$

- Special $\tau \quad\left(\tau=\frac{|E|}{\bar{\rho}}\right)$:

$$
\mathrm{PSF}=\frac{|E|}{\bar{\rho}} \frac{\bar{\sigma}}{\bar{\sigma}+2} \approx \tau
$$

Improvements vs Hogwild!

If $|B|=|V|$ (blocks = coordinates), then our method coincides with
Hogwild! (as analyzed in Niu et al), up to stepsize choice:

$$
x_{j+1}=x_{j}-\gamma|E| \omega_{e} \nabla_{v} f_{e}\left(x_{r(j)}\right)
$$

Improvements vs Hogwild!

If $|B|=|V|$ (blocks = coordinates), then our method coincides with Hogwild! (as analyzed in Niu et al), up to stepsize choice:

$$
x_{j+1}=x_{j}-\gamma|E| \omega_{e} \nabla_{v} f_{e}\left(x_{r(j)}\right)
$$

Niu-Recht-Ré-Wright (Hogwild!, 2011):

$$
\Lambda=4 \omega^{\prime}+24 \tau \frac{\rho^{\prime}}{|E|}+24 \tau^{2} \omega^{\prime}\left(\delta^{\prime}\right)^{1 / 2}
$$

R.-Takáč:

$$
\wedge=\bar{\omega}+2 \tau \frac{\bar{\rho}}{|E|}
$$

Improvements vs Hogwild!

If $|B|=|V|$ (blocks = coordinates), then our method coincides with Hogwild! (as analyzed in Niu et al), up to stepsize choice:

$$
x_{j+1}=x_{j}-\gamma|E| \omega_{e} \nabla_{v} f_{e}\left(x_{r(j)}\right)
$$

Niu-Recht-Ré-Wright (Hogwild!, 2011):

$$
\Lambda=4 \omega^{\prime}+24 \tau \frac{\rho^{\prime}}{|E|}+24 \tau^{2} \omega^{\prime}\left(\delta^{\prime}\right)^{1 / 2}
$$

R.-Takáč:

$$
\Lambda=\bar{\omega}+2 \tau \frac{\bar{\rho}}{|E|}
$$

Advantages of our approach:

- Dependence on averages and not maxima! ($\left.\omega^{\prime} \rightarrow \bar{\omega}, \rho^{\prime} \rightarrow \bar{\rho}\right)$
- Better constants ($4 \rightarrow 1,24 \rightarrow 2$)
- The third large term is not present (no dependence on τ^{2} and δ^{\prime})
- Introduction of blocks (\Rightarrow cover also block coordinate descent, gradient descent, SGD)
- Simpler analysis

Modified Algorithm: Global Reads and Local Writes*

Partition vertices (coordinates) into $\tau+1$ blocks

$$
V=b_{1} \cup b_{2} \cup \cdots \cup b_{\tau+1}
$$

and assign block b_{i} to processor $i, i=1,2, \ldots, \tau+1$.
Processor i will (asynchronously) do:

- Pick edge $e \in\left\{e^{\prime} \in E: e^{\prime} \cap b_{i} \neq \emptyset\right\}$, uniformly at random (edge intersecting with block owned by processor i)
- Update:

$$
x_{j+1}=x_{j}-\alpha \nabla_{b_{i}} f_{e}\left(x_{r(j)}\right)
$$

Pros and cons:

- + good if global reads and local writes are cheap, but global writes are expensive (NUMA = Non Uniform Memory Access)
- - do not have an analysis
* Idea proposed by Ben Recht.

Experiment 1: rcv

size $=1.2 G B$, features $=|V|=47,236$, training: $|E|=677,399$, testing: 20,242

Experiment 2

Artificial problem instance:

$$
\text { minimize } f(x)=\frac{1}{2}\|A x\|^{2}=\sum_{i=1}^{m} \frac{1}{2}\left(A_{i}^{T} x\right)^{2}
$$

$$
A \in \mathbf{R}^{m \times n} ; \quad m=|E|=500,000 ; \quad n=|V|=50,000
$$

Three methods:

- Synchronous, all = parallel synchronous method with $|B|=1$
- Asynchronous, all $=$ parallel asynchronous method with $|B|=1$
- Asynchronous, block $=$ parallel asynchronous method with $|B|=\tau$ (no need for atomic operations \Rightarrow additional speedup)

We measure elapsed time needed to perform 20 m iterations (20 epochs)

Uniform instance: $|e|=10$ for all edges

PART 2:

PARALLEL BLOCK COORDINATE DESCENT

based on:

P. R. and M. Takáč, Parallel coordinate descent methods for big data optimization, arXiv:1212:0873, 2012.

Overview

- A rich family of synchronous parallel block coordinate descent methods

Overview

- A rich family of synchronous parallel block coordinate descent methods
- Theory and algorithms work for convex composite functions with block-separable regularizer:

$$
\text { minimize: } F(x) \equiv \underbrace{\sum_{e \in E} f_{e}(x)}_{f}+\lambda \underbrace{\sum_{b \in B} \Psi_{b}(x)}_{\psi}
$$

- Decomposition $f=\sum_{e \in E} f_{e}$ does not need to be known!
- f : convex or strongly convex (complexity for both)

Overview

- A rich family of synchronous parallel block coordinate descent methods
- Theory and algorithms work for convex composite functions with block-separable regularizer:

$$
\text { minimize: } F(x) \equiv \underbrace{\sum_{e \in E} f_{e}(x)}_{f}+\lambda \underbrace{\sum_{b \in B} \Psi_{b}(x)}_{\psi}
$$

- Decomposition $f=\sum_{e \in E} f_{e}$ does not need to be known!
- f : convex or strongly convex (complexity for both)
- All parameters for running the method according to theory are easy to compute:
- block Lipschitz constants $L_{1}, \ldots, L_{|B|}$
- ω^{\prime}

ACDC: Lock-Free Parallel Coordinate Descent C ++ code

http://code.google.com/p/ac-dc/

Can solve a LASSO problem with

- $|V|=10^{9}$,
- $|E|=2 \times 10^{9}$,
- $\omega^{\prime}=35$,
- on a machine with $\tau=24$ processors,
- to $\epsilon=10^{-14}$ accuracy,
- in 2 hours,
- starting with initial gap $\approx 10^{22}$.

Complexity Results

First complexity analysis of parallel coordinate descent:

$$
\mathbf{P}\left(F\left(x_{k}\right)-F^{*} \leq \epsilon\right) \geq 1-p
$$

- Convex functions:

$$
k \geq\left(\frac{2 \beta}{\alpha}\right) \frac{\left\|x_{0}-x_{*}\right\|_{L}^{2}}{\epsilon} \log \frac{F\left(x_{0}\right)-F^{*}}{\epsilon p}
$$

- Strongly convex functions (with parameters μ_{f} and μ_{ψ}):

$$
k \geq \frac{\beta+\mu_{\psi}}{\alpha\left(\mu_{f}+\mu_{\psi}\right)} \log \frac{F\left(x_{0}\right)-F^{*}}{\epsilon P}
$$

- Leading constants matter!

Parallelization Speedup Factors

Closed-form formulas for parallelization speedup factors (PSFs):

- PSFs are functions of ω^{\prime}, τ and $|B|$, and depend on sampling
- Example 1: fully parallel sampling (all blocks are updated, i.e., $\tau=|B|)$:

$$
P S F=\frac{|B|}{\omega^{\prime}} .
$$

- Example 2: τ-nice sampling (all subsets of τ blocks are chosen with the same probability):

$$
P S F=\frac{\tau}{1+\frac{\left(\omega^{\prime}-1\right)(\tau-1)}{|B|-1}}
$$

A Problem with Billion Variables

LASSO problem:

$$
F(x)=\frac{1}{2}\|A x-b\|^{2}+\lambda\|x\|_{1}
$$

The instance:

- A has
- $|E|=m=2 \times 10^{9}$ rows
- $|V|=n=10^{9}$ columns ($=\#$ of variables)
- exactly 20 nonzeros in each column
- on average 10 and at most 35 nonzeros in each row $\left(\omega^{\prime}=35\right)$
- optimal solution x^{*} has 10^{5} nonzeros
- $\lambda=1$

Solver: Asynchronous parallel coordinate descent method with independent nice sampling and $\tau=1,8,16$ cores

\# Coordinate Updates / n

\# Iterations / n

Wall Time

Billion Variables - 1 Core

k / n	$F\left(x_{k}\right)-F^{*}$	$\left\\|x_{k}\right\\|_{0}$	time [hours]		
0	$<10^{23}$	0	0.00		
3	$<10^{21}$	$451,016,082$	3.20		
4	$<10^{20}$	$583,761,145$	4.28		
6	$<10^{19}$	$537,858,203$	6.64		
7	$<10^{17}$	$439,384,488$	7.87		
8	$<10^{16}$	$329,550,078$	9.15		
9	$<10^{15}$	$229,280,404$	10.43		
13	$<10^{13}$	$30,256,388$	15.35		
14	$<10^{12}$	$16,496,768$	16.65		
15	$<10^{11}$	$8,781,813$	17.94		
16	$<10^{10}$	$4,580,981$	19.23		
17	$<10^{9}$	$2,353,277$	20.49		
19	$<10^{8}$	627,157	23.06		
21	$<10^{6}$	215,478	25.42		
23	$<10^{5}$	123,788	27.92		
26	$<10^{3}$	102,181	31.71		
29	$<10^{1}$	100,202	35.31		
31	$<10^{0}$	100,032	37.90		
32	$<10^{-1}$	100,010	39.17		
33	$<10^{-2}$	100,002	40.39		
34	$<10^{-13}$	100,000	41.47		

Billion Variables - 1, 8 and 16 Cores

	$F\left(x_{k}\right)-F^{*}$			Elapsed Time		
$(k \cdot \tau) / n$	1 core	8 cores	16 cores	1 core	8 cores	16 cores
0	$6.27 \mathrm{e}+22$	$6.27 \mathrm{e}+22$	$6.27 \mathrm{e}+22$	0.00	0.00	0.00
1	$2.24 \mathrm{e}+22$	$2.24 \mathrm{e}+22$	$2.24 \mathrm{e}+22$	0.89	0.11	0.06
2	$2.25 \mathrm{e}+22$	$3.64 \mathrm{e}+19$	$2.24 \mathrm{e}+22$	1.97	0.27	0.14
3	$1.15 \mathrm{e}+20$	$1.94 \mathrm{e}+19$	$1.37 \mathrm{e}+20$	3.20	0.43	0.21
4	$5.25 \mathrm{e}+19$	$1.42 \mathrm{e}+18$	$8.19 \mathrm{e}+19$	4.28	0.58	0.29
5	$1.59 \mathrm{e}+19$	$1.05 \mathrm{e}+17$	$3.37 \mathrm{e}+19$	5.37	0.73	0.37
6	$1.97 \mathrm{e}+18$	$1.17 \mathrm{e}+16$	$1.33 \mathrm{e}+19$	6.64	0.89	0.45
7	$2.40 \mathrm{e}+16$	$3.18 \mathrm{e}+15$	$8.39 \mathrm{e}+17$	7.87	1.04	0.53
\vdots						
26	$3.49 \mathrm{e}+02$	$4.11 \mathrm{e}+01$	$3.68 \mathrm{e}+03$	31.71	3.99	2.02
27	$1.92 \mathrm{e}+02$	$5.70 \mathrm{e}+00$	$7.77 \mathrm{e}+02$	33.00	4.14	2.10
28	$1.07 \mathrm{e}+02$	$2.14 \mathrm{e}+00$	$6.69 \mathrm{e}+02$	34.23	4.30	2.17
29	$6.18 \mathrm{e}+00$	$2.35 \mathrm{e}-01$	$3.64 \mathrm{e}+01$	35.31	4.45	2.25
30	$4.31 \mathrm{e}+00$	$4.03 \mathrm{e}-02$	$2.74 \mathrm{e}+00$	36.60	4.60	2.33
31	$6.17 \mathrm{e}-01$	$3.50 \mathrm{e}-02$	$6.20 \mathrm{e}-01$	37.90	4.75	2.41
32	$1.83 \mathrm{e}-02$	$2.41 \mathrm{e}-03$	$2.34 \mathrm{e}-01$	39.17	4.91	2.48
33	$3.80 \mathrm{e}-03$	$1.63 \mathrm{e}-03$	$1.57 \mathrm{e}-02$	40.39	5.06	2.56
34	$7.28 \mathrm{e}-14$	$7.46 \mathrm{e}-14$	$1.20 \mathrm{e}-02$	41.47	5.21	2.64
35	-	-	$1.23 \mathrm{e}-03$	-	-	2.72
36	-	-	$3.99 \mathrm{e}-04$	-	-	2.80
37	-	-	$7.46 \mathrm{e}-14$	-	-	2.87

References

P. R. and M. Takáč, Lock-free randomized first order methods, arXiv:1301:xxxx.
P. R. and M. Takáč, Parallel coordinate descent methods for big data optimization, arXiv:1212:0873, 2012.
P. R. and M. Takáč, Iteration complexity of block coordinate descent methods for minimizing a composite function, Mathematical Programming, Series A, 2013.
P. R. and M. Takáč, Efficient serial and parallel coordinate descent methods for huge-scale truss topology design, Operations Research Proceedings, 2012.
F. Niu, B. Recht, C. Ré, and S. Wright, Hogwild!: A lock-free approach to parallelizing stochastic gradient descent, NIPS 2011.
A. Nemirovski, A. Juditsky, G. Lan, and A. Shapiro, Robust stochastic approximation approach to stochastic programming, SIAM J. Opt., (4):1574-1609, 2009.
M. Zinkevich, M. Weimer, A. Smola, and L. Li. Parallelized stochastic gradient descent, NIPS 2010.

Yu. Nesterov, Efficiency of coordinate descent methods on huge-scale optimization problems, SIAM J. Opt. 22(2):341-362, 2012.

