

Randomized Optimization Methods

Peter Richtárik

King Abdullah University of Science and Technology

Paris, Aug 28-Sept 1, 2017

Outline

1. Supervised Learning

- Prediction, loss functions, regularizers, ERM
- Convexity, strong convexity and smoothness
- ERM duality, convex conjugation
- 4 + 4 problem classes
- Linear systems as ERM
- 2. Standard Algorithmic Toolbox in Optimization
 - 8 tools: GD, Acceleration, Proximal Trick, Randomized Decomposition (SGD/RCD), Minibatching, Variance Reduction, Importance Sampling, Duality
 - Summary

3. Stochastic Methods for Linear Systems

- Stochastic reformulations
- Basic, parallel and accelerated methods
- Dual method
- Extra topics: special cases, stochastic preconditioning, stochastic matrix inversion

Part 1 Supervised Learning

The Idea

Prediction of Object Labels

Set of "natural" ${\cal A}$ objects ${\cal A}$	Set of labels	\mathcal{B}	Prediction task
NYT articles	Article category	(finite set)	Multi-class classification
E-mails	Spam / not-spam	$\{-1, 1\}$	Binary classification
Images	Image category	(finite set)	Multi-class classification
Surveillance videos	Probability of a threat	[0,1]	Regression
User clicks	Age	(0, 150]	Regression

Statistical Model of Objects & Labels

We assume that object-label pairs occur in nature according to some (unknown) distribution:

 $(a_i, b_i) \sim \mathcal{D}$

Given a sampled object a_i predict the unknown label b_i

Feature Map: Vector Representation of Natural Objects # features

The New York Times

The New York Times

he New Hork Ein

The New York Times

Vector representation

Feature engineering (manual design) Representation learning (automatic design)

Kernel Trick

Input Space

Feature Space

Parameter defining the predictor

$$h_x: \mathcal{A} \mapsto \mathbb{R}, \quad x \in \mathbb{R}^d$$

Feature map

$$h_x(a_i)$$

Linear Predictor	$x^{\top}\Phi(a_i)$	$\Phi(a_i)$ explicit
Neural Network	$x_l^{\top}\sigma(x_{l-1}^{\top}\sigma(\cdots x_2^{\top}\sigma(x_1^{\top}a_i)))$	$\begin{array}{c} learned \\ \sigma(x_{l-1}^\top \sigma(\cdots x_2^\top \sigma(x_1^\top a_i))) \end{array}$
	a_i a_i	$\begin{array}{c} 2 \\ \mathbf{x_3} \\ \mathbf{x_l}^{T} \sigma(x_{l-1}^{T} \sigma(\cdots x_2^{T} \sigma(x_1^{T} a_i)) \end{array}$

We want the expected loss ("true risk") to be small:

$$\min_{x \in \mathbb{R}^d} \mathbf{E}_{(a_i, b_i) \sim \mathcal{D}} \left[loss(h_x(a_i), b_i) \right]$$

Empirical Risk Minimization

Draw i.i.d. data samples from the distribution

$$(a_1, b_1), (a_2, b_2), \dots, (a_n, b_n) \sim \mathcal{D}$$

Output predictor which minimizes the Empirical Risk:

$$\min_{x \in \mathbb{R}^d} \frac{1}{n} \sum_{i=1}^n loss(h_x(a_i), b_i) + g(x)$$

From now on, let:

on, let:
$$h_x(a_i) = \Phi(a_i)^+ x$$
 (linear predictor)
 $\Phi(a_i) = a_i$ (objects are already represented as vectors)
 $f_i(a_i^\top x) \stackrel{\text{def}}{=} loss(a_i^\top x, b_i)$ (hiding the label)

Loss Functions & Regularizers

Regularizers

Examples of ERM Problems

	$f_i(t)$	g(x)
Least Squares	$\frac{1}{2}(t-b_i)^2$	0
Ridge Regression	$\frac{1}{2}(t-b_i)^2$	$\frac{\mu}{2} \ x\ _2^2 \qquad \ x\ _2 = \sqrt{x^\top x}$
LASSO	$\frac{1}{2}(t-b_i)^2$	$\mu \ x\ _1 \qquad \ x\ _1 = \sum_i x_i $
Non-negative Least Squares Regression	$\frac{1}{2}(t-b_i)^2$	$1_{x \ge 0}(x) = \begin{cases} 0 & x \ge 0, \\ +\infty & \text{otherwise.} \end{cases}$
SVM	$\max\{0, 1 - b_i \cdot t\}$	$\frac{\mu}{2} \ x\ _2^2$
Logistic Regression	$\log(1 + e^{-b_i t})$	$\frac{\mu}{2} \ x\ _2^2$
Linear System (Best Approximation)	$1_{\{b_i\}}(t) = \begin{cases} 0 & t = b_i, \\ +\infty & \text{otherwise.} \end{cases}$	$\frac{1}{2} \ x - x^0\ _B^2$
L1 Regression	$ t - b_i $	0

SVM: Support Vector Machine

Source: wikipedia

Typical Function Classes

$f:\mathbb{R}^d \to \mathbb{R}$	Defining property	If twice differentiable
convex	$\begin{aligned} f(\alpha x + (1 - \alpha)y) &\leq \alpha f(x) + (1 - \alpha)f(y) \\ & \text{If continuously differentiable:} \\ f(x) + \langle \nabla f(x), y - x \rangle \leq f(y) \\ 0 &\leq \langle \nabla f(x) - \nabla f(y), x - y \rangle \end{aligned}$	$0 \preceq \nabla^2 f(x)$
μ -strongly convex	$\begin{split} f(\alpha x + (1 - \alpha)y) &\leq \alpha f(x) + (1 - \alpha)f(y) - \frac{\mu}{2}\alpha(1 - \alpha)\ x - y\ ^2 \\ & \text{If continuously differentiable:} \\ f(x) + \langle \nabla f(x), y - x \rangle + \frac{\mu}{2}\ y - x\ ^2 &\leq f(y) \\ \mu \ x - y\ ^2 &\leq \langle \nabla f(x) - \nabla f(y), x - y \rangle \end{split}$	$\mu \cdot I \preceq \nabla^2 f(x)$
$L ext{-smooth}$	$\begin{aligned} \ \nabla f(x) - \nabla f(y)\ &\leq L \ x - y\ \\ f(y) &\leq f(x) + \langle \nabla f(x), y - x \rangle + \frac{L}{2} \ y - x\ ^2 \end{aligned}$	$\nabla^2 f(x) \le L \cdot I$

Empirical Risk Minimization

Primal Problem

Adrien-Marie Legendre

1820 watercolor caricature of Adrien-Marie Legendre by French artist Julien-Leopold Boilly (see portrait debacle), the only existing portrait known^[1]

Born	18 September 1752 Paris, France
Died	10 January 1833 (aged 80) Paris, France
Residence	France
Nationality	French
Fields	Mathematician
Institutions	École Militaire École Normale École Polytechnique
Alma mater	Collège ditagai
Known for	Legendre transformation Legendre polynomials Legendre transform

Introducing the character $\partial^{[2]}$

Convex Conjugate (Legendre-Fenchel Transform)

- Convex conjugate of a function is the generalization of the Legendre transform
- Convex conjugation was 200 years later studied by Werner Fenchel
- It is a key tool in optimization duality

Werner Fenchel, 1972

Born	3 May 1905 Berlin, Germany
Died	24 January 1988 (aged 82) Copenhagen, Denmark
Residence	Germany, Denmark, USA
Citizenship	German
Fields	Mathematics: Geometry Optimization
Institutions	University of Copenhagen University of Göttingen
Alma mater	University of Berlin
Doctoral advisor	Ludwig Bieberbach
Doctoral students	Birgit Grodal Peter Scherk Troels Jørgensen
Known for	Alove
	Legendre–Fenchel transformat Fenchel's duality theorem

Theoremf is L-smooth \Leftrightarrow f^* is $\frac{1}{L}$ -strongly convexf is μ -strongly convex \Leftrightarrow f^* is $\frac{1}{\mu}$ -smooth

Examples: $f(x) = \frac{1}{2} ||x||_B^2 \Rightarrow f^*(x) = \frac{1}{2} ||x||_{B^{-1}}^2$ $f(x) = 1_C(x) \Rightarrow f^*(z) = \sup_{x \in C} \langle z, x \rangle$

$f^*(z) \stackrel{\text{def}}{=} \sup_{x \in \mathbb{R}^d} \{ \langle z, x \rangle - f(x) \}$ Primal and Dual Problems

$$\min_{x \in \mathbb{R}^d} \left[P(x) \stackrel{\text{def}}{=} \frac{1}{n} \sum_{i=1}^n f_i(a_i^\top x) + g(x) \right]$$

$$\max_{y \in \mathbb{R}^n} \begin{bmatrix} D(y) \stackrel{\text{def}}{=} -\frac{1}{n} \sum_{i=1}^n f_i^*(-y_i) - g^*\left(\frac{1}{n}A^\top y\right) \end{bmatrix}$$

concave
$$A^\top = \begin{pmatrix} a_1 & a_2 & \cdots & a_n \end{pmatrix} \begin{pmatrix} a_1^\top \\ a_2^\top \\ \vdots \\ a_n^\top \end{pmatrix}$$

Duality

Weak Duality:
$$P(x) \ge D(y)$$
 (Always)

If *g* is strongly convex, we can recover primal optimal solution from dual optimal solution:

$$x^* = \nabla g^* \left(\frac{1}{n} A^\top y^*\right)$$

Weak Duality & Optimality Conditions

$$P(x) - D(y) = g(x) + g^* \left(\frac{1}{n} A^\top y\right) + \frac{1}{n} \sum_{i=1}^n \left\{ f_i(a_i^\top x) + f_i^*(-y_i) \right\} =$$

Optimality conditions

$$x = \nabla g^* \left(\frac{1}{n} A^\top y\right)$$
$$y_i = -\nabla f_i(a_i^\top x) \quad \forall i$$

4 Interesting Classes of ERM Problems Based on Dimensions

n d	SMALL	BIG
SMALL	Deterministic methods will do fine:	"Big Model" Setting
	GD, AGD, Newton, quasi-Newton,	Decompose d Primal: RCD-type
	"Big Data" Setting	
BIG	Decompose n Primal: SGD-type Dual: RCD-type	?

Example: Solving Linear Systems

Linear Systems (Best Approximation Version) as a Primal ERM Problem

$$g(x) = \frac{1}{2} ||x - x^{0}||_{B}^{2}$$

$$\min_{x \in \mathbb{R}^{d}} \left[P(x) \stackrel{\text{def}}{=} \frac{1}{n} \sum_{i=1}^{n} f_{i}(a_{i}^{\top}x) + g(x) \right]$$

$$f_{i}(t) = 1_{\{b_{i}\}}(t) \stackrel{\text{def}}{=} \begin{cases} 0 & \text{for } t = b_{i}, \\ 0 & \text{for } t = b_{i}, \end{cases}$$

ise.

Primal Problem: Best Approximation

Dual Problem

Recall convex conjugate:

$$f^*(z) \stackrel{\text{def}}{=} \sup_{x \in \mathbb{R}^d} \left\{ \langle z, x \rangle - f(x) \right\}$$

$$f_i(t) = 1_{\{b_i\}}(t)$$
 $f_i^*(t) = b_i t$

 $g(x) = \frac{1}{2} \|x - x^0\|_B^2 \qquad g^*(x) = \langle x^0, x \rangle + \frac{1}{2} \|x\|_{B^{-1}}^2$

$$\max_{y \in \mathbb{R}^n} \left[D(y) \stackrel{\text{def}}{=} \left\langle b - Ax^0, \frac{y}{n} \right\rangle - \frac{1}{2} \left\| A^\top \frac{y}{n} \right\|_{B^{-1}}^2 \right]$$

Unconstrained (non-strongly) concave quadratic maximization

Recovering Primal Solution from Dual Solution

Recall:

$$x^* = \nabla g^* \left(\frac{1}{n} A^\top y^*\right)$$

$$g^*(x) = \langle x^0, x \rangle + \frac{1}{2} \|x\|_{B^{-1}}^2$$

$$\nabla g^*(x) = x^0 + B^{-1}x$$

$$x^* = x^0 + \frac{1}{n}B^{-1}A^{\top}y^*$$

Further Reading on Randomized Methods for Linear Systems

Primal View:

Robert M. Gower and P.R. **Randomized Iterative Methods for Linear Systems** *SIAM J. on Matrix Analysis and Applications* 36(4), 1660-1690, 2015

Dual View:

Most Downloaded SIMAX Paper

Robert M. Gower and P.R. **Stochastic Dual Ascent for Solving Linear Systems** *arXiv:1512.06890,* 2015

Inverting Matrices & Connection to Quasi-Newton Methods:

Robert M. Gower and P.R. **Randomized Quasi-Newton Updates are Linearly Convergent Matrix Inversion Algorithms** *arXiv:1602.01768,* 2016 Part 2 Standard Algorithmic Toolbox

Optimization with Big Data = Extreme* Mountain Climbing

* in a billion dimensional space on a foggy day
God's Algorithm = Teleportation

Mortals Have to Walk...

Algorithmic Tools

- 1. Gradient descent
- 2. Handling non-smoothness via the proximal trick
- 3. Acceleration
- 4. Randomized decomposition
- 5. Parallelism / mini-batching

More tools:

- Variance reduction
- Importance sampling
- Asynchrony
- Curvature
- Line search

Brief, Biased and Severely Incomplete History of Big Data Optimization

Tool 1 Gradient Descent (1847)

"Just follow a ball rolling down the hill"

Augustin Cauchy **Méthode générale pour la résolution des systèmes d'équations simultanées,** *pp. 536–538,* 1847

The Problem

 $f(x) + \langle \nabla f(x), y - x \rangle + \frac{\mu}{2} \|y - x\|^2 \le f(y) \le f(x) + \langle \nabla f(x), y - x \rangle + \frac{L}{2} \|y - x\|^2$

Gradient Descent (GD)

Tool 2 Acceleration (1983/2003)

"Gradient descent can be made much faster!"

Accelerated Gradient Descent (AGD)

Gradient

Extrapola

 $u^{t+1} = x^t$

Hient step:

$$y^{t+1} = x^{t} - \frac{1}{L}\nabla f(x^{t})$$

$$x^{t+1} = (1 + \alpha)y^{t+1} - \alpha y^{t}$$

$$x^{t+1} = (1 + \alpha)y^{t+1} - \alpha y^{t}$$

$$x^{t+1} = (1 + \alpha)y^{t+1} - \alpha y^{t}$$

$$y^{t+1}$$

$$x^{t+1} = (1 + \alpha)y^{t+1} - \alpha y^{t}$$

$$y^{t+1}$$

$$x^{t+1} = (1 + \alpha)y^{t+1} - \alpha y^{t}$$

$$x^{t+1} = (1 + \alpha)y^{t+1} - \alpha y^{t}$$

$$x^{t+1} = (1 + \alpha)y^{t+1} - \alpha y^{t}$$

$$y^{t+1}$$

$$y^{t+1}$$

$$x^{t+1} = (1 + \alpha)y^{t+1} - \alpha y^{t}$$

$$y^{t+1} = (1 + \alpha)y^{t+1} - \alpha y^{t}$$

error

Acceleration and ODEs

ODE for Gradient Descent

$$\dot{X}(t) + \nabla f(X(t)) = 0$$

ODE for Accelerated Gradient Descent

$\ddot{X}(t) + \frac{3}{t}\dot{X}(t) + \nabla f(X(t)) = 0$

Weijie Su, Stephen Boyd and Emmanuel J. Candes A Differential Equation for Modeling Nesterov's Accelerated Gradient Method: Theory and Insights NIPS, 2014

Acceleration

- Reignited interest in gradient methods
- Called momentum in deep neural networks literature
- Oscillation can be tamed (e.g., by restarting)
- Approaches:
 - Early work [Nesterov, 1983, 2003, 2005]
 - ODEs [Su-Boyd-Candes, 2014]
 - Geometry/ellipsoid method [Bubeck-Lee-Singh, 2014]
 - Linear coupling [AllenZhu-Orecchia, 2014]
 - Katalyst [Mairal-Zarchaoui, 2015]
 - Optimal averaging [Scieur-D'Aspremont-Bach, 2016]

Yurii Nesterov

Introductory Lectures on Convex Optimization: a Basic Course Kluwer, Boston, 2003

Strongly convex case

Yurii Nesterov

A Method for Unconstrained Convex Minimization Problem with the Rate of Convergence O(1 / k^2) Soviet Math. Doklady 269, 543-547, 1983

Tool 3

Proximal Trick (2004) "Some nonsmooth problems are as easy as smooth problems"

The Problem

 $\min_{x \in \mathbb{R}^d} f(x) + g(x)$ Convex, *L*-smooth, convex but can be nonsmooth

Truss Topology Design -1.5-2 0 0 -2.5 -3Đ 0 -3.5 -4 -4.5 -5.5

P.R. and Martin Takáč. Efficient Serial and Parallel Coordinate Descent Methods for Huge-Scale Truss Topology Design. Operations Research Proceedings, pp 27-32, 2012

Image Deblurring

Amir Beck and Marc Teboulle. **A Fast Iterative Shrinking-Thresholding Algorithm for Linear Inverse Problems.** *SIAM J. Imaging Sciences* 2(1), 183-202, 2009

Jakub Konečný, Jie Liu, P.R., Martin Takáč. **Mini-Batch Semi-Stochastic Gradient Descent in the Proximal Setting.** *IEEE Journal of Selected Topics in Signal Processing* 10(2), 242-255, 2016

Image Segmentation

Alina Ene and Huy L. Nguyen. Random Coordinate Descent Methods for Minimizing Decomposable Submodular Functions. *ICML* 2015

Olivier Fercoq and P.R. Accelerated, Parallel and Proximal Coordinate Descent. *SIAM Journal on Optimization* 25(4), 1997-2023, 2015

Image Segmentation: (Reformulated) Submodular Optimization

Image Segmentation: (Reformulated) Submodular Optimization $\min_{x \in \mathbb{R}^d} f(x) + g(x)$ minimize $x_i \in P_i, \ i = 1, 2, \dots, d$ subject to $f(x) = \frac{1}{2} \left\| \sum_{i=1}^{d} x_i \right\|^2$ $g(x) = 1_{P_1 \cap P_2 \cap \dots \cap P_d}(x) = \sum_{i=1}^d 1_{P_i}(x) = \begin{cases} 0 & x \in P_1 \cap P_2 \cap \dots \cap P_d, \\ +\infty & \text{otherwise.} \end{cases}$

Proximal Gradient Descent (PGD)

STEP 1: Pretend there is no regularizer

$$z^{t+1} = x^t - \frac{1}{L}\nabla f(x^t)$$

STEP 2: Take a "proximal" step with respect to g

$$x^{t+1} = \arg\min_{x \in \mathbb{R}^d} \frac{1}{2} \|x - z^{t+1}\|_2^2 + \frac{1}{L}g(x)$$

 $\frac{L}{\mu}\log(1/\epsilon)$

- Gradient Descent is a special case for g = 0
- Even though this is a nonsmooth problem,
 # steps is the same as for Gradient Descent!
- Efficient if Step 2 is easy to do

Example: Projected Gradient Descent

Tool 4 Randomized Decomposition "Doing many simple decisions is better than doing a few smart ones"

Why Randomize?

Decomposition Principles

$$\min_{x \in Q} f(x)$$

Decompose fadditive: $f = \sum_i f_i$

Example: Stochastic Gradient Descent Decompose Qadditive: $Q = \mathbb{R}^d = \bigoplus_{i=1}^s Q_i$

Example: Randomized Coordinate Descent

multiplicative: $Q = \bigcap_{i=1}^{s} Q_i$

Example: Stochastic Projection Method

Primal ERM Problem: Stochastic Gradient Descent

H. Robbins and S. Monro **A Stochastic Approximation Method** *Annals of Mathematical Statistics* 22, pp. 400–407, 1951

$$\min_{x \in \mathbb{R}^d} \left[P(x) \stackrel{\text{def}}{=} \frac{1}{n} \sum_{i=1}^n f_i(a_i^\top x) + \mathbf{g}(x) \right]$$

Stochastic Gradient Descent (SGD)

Unbiased estimate of the gradient

1 iteration of SGD is *n* times cheaper than 1 iteration of GD !

Dual ERM Problem: Randomized Coordinate Descent

Yurii Nesterov **Efficiency of Coordinate Descent Methods on Huge-Scale Optimization Problems** *SIAM Journal on Optimization*, 22(2), 341–362, 2012

P.R. and Martin Takáč **Iteration Complexity of Randomized Block Coordinate Descent Methods for Minimizing a Composite Function** *Mathematical Programming* 144(2), 1-38, 2014 (arXiv:1107.2848)

INFORMS Computing Society Best Student Paper Prize (runner up), 2012

How to Handle Big Dimensions?

Primal ERM: Dual ERM:

$$\min_{x \in \mathbb{R}^d} \left[P(x) \stackrel{\text{def}}{=} \frac{1}{n} \sum_{i=1}^n f_i(a_i^\top x) + g(x) \right] \qquad \max_{y \in \mathbb{R}^d} \left[D(y) \stackrel{\text{def}}{=} -\frac{1}{n} \sum_{i=1}^n f_i^*(-y_i) - g^*\left(\frac{1}{n}A^\top y\right) \right]$$

What if *d* is big? What if *n* is big?

Solution: Decompose the dimension!

The Problem

Randomized Coordinate Descent in 2D e_2 Ν E W S e_1

Randomized Coordinate Descent

f is L_i -smooth along e_i : $|\nabla_i f(x + te_i) - \nabla_i f(x)| \le L_i |t|$

Often, each iteration is *n* times cheaper. However, complexity is not *n* times worse! So, RCD is better than GD!

 $\mathbf{E}[f(x^t) - f(x^*)] \le \epsilon$

$$t \ge \left(\frac{\max_i L_i}{\mu}\right) \log\left(\frac{C}{\epsilon}\right)$$

SGD vs GD vs RCD

LASSO: 1 Billion Rows & 100 Million Variables source: [R. & Takáč, arXiv 2011, MAPR 2014] $A \in \mathbf{R}^{10^9 \times 10^8}$

t/n	error	# nonzeros in x_k	time [s]
0.01	$< 10^{18}$	$18,\!486$	1.32
9.35	$< 10^{14}$	$99,\!837,\!255$	1294.72
11.97	$< 10^{13}$	$99,\!567,\!891$	1657.32
14.78	$< 10^{12}$	$98,\!630,\!735$	2045.53
17.12	$< 10^{11}$	$96,\!305,\!090$	2370.07
20.09	$< 10^{10}$	$86,\!242,\!708$	2781.11
22.60	$< 10^{9}$	$58,\!157,\!883$	3128.49
24.97	$< 10^{8}$	$19,\!926,\!459$	3455.80
28.62	$< 10^{7}$	$747,\!104$	3960.96
31.47	$< 10^{6}$	$266,\!180$	4325.60
34.47	$< 10^{5}$	$175,\!981$	4693.44
36.84	$< 10^4$	$163,\!297$	5004.24
39.39	$< 10^{3}$	$160,\!516$	5347.71
41.08	$< 10^2$	$160,\!138$	5577.22
43.88	$< 10^{1}$	$160,\!011$	5941.72
45.94	$< 10^{0}$	160,002	6218.82
46.19	$< 10^{-1}$	$160,\!001$	6252.20
46.25	$< 10^{-2}$	$160,\!000$	6260.20
46.89	$< 10^{-3}$	160,000	6344.31
46.91	$< 10^{-4}$	$160,\!000$	6346.99
46.93	< 10 ⁻⁵	$160,\!000$	6349.69

Tool 5

Parallelism / Minibatching

"Work on random subsets"

The Problem

Parallel Randomized Coordinate Descent

P.R. and Martin Takáč **Parallel Coordinate Descent Methods for Big Data Optimization** *Mathematical Programming* 156(1), 433-484, 2016

> 16th IMA Leslie Fox Prize (2nd), 2013 Most downloaded MAPR paper

Actually, Averaging Can Be Very Bad! $f(x) = (x_1 - 1)^2 + (x_2 - 1)^2 + \dots + (x_n - 1)^2$ **BAD!!!** $t \ge \frac{n}{2} \log\left(\frac{n}{2}\right)$ $x^0 = 0 \in \mathbb{R}^n \implies f(x^0) = n$ $f(x^t) = n\left(1 - \frac{1}{n}\right)^{2t} \le \epsilon$

How to Combine the Updates?

- We should do datadependent combination of the results obtained in parallel
- There is rich theory for this now

Zheng Qu and P.R. **Coordinate Descent with Arbitrary Sampling II: Expected Separable Overapproximation** *Optimization Methods and Software* 31(5), 858-884, 2016

Performance

error

Problem with 1 Billion Variables

source: [R. & Takáč, arXiv 2011, MAPR 2014]

		Error $f(x^t) - f(x^*)$			Elapsed Time		
-	$(t \cdot \tau)/n$	1 core	8 cores	16 cores	1 core	8 cores	16 cores
-	0	6.27e+22	6.27e+22	6.27e+22	0.00	0.00	0.00
	1	2.24e+22	2.24e+22	2.24e+22	0.89	0.11	0.06
	2	2.25e+22	3.64e+19	2.24e+22	1.97	0.27	0.14
	3	1.15e+20	1.94e+19	1.37e+20	3.20	0.43	0.21
	4	5.25e+19	1.42e+18	8.19e+19	4.28	0.58	0.29
	5	1.59e+19	1.05e+17	3.37e+19	5.37	0.73	0.37
	6	1.97e+18	1.17e+16	1.33e+19	6.64	0.89	0.45
	7	2.40e+16	3.18e+15	8.39e+17	7.87	1.04	0.53
	:	:	:		:	:	:
	26	3.49e+02	4.11e+01	3.68e+03	31.71	3.99	2.02
	27	1.92e+02	5.70e+00	7.77e+02	33.00	4.14	2.10
	28	1.07e+02	2.14e+00	6.69e+02	34.23	4.30	2.17
	29	6.18e+00	2.35e-01	3.64e+01	35.31	4.45	2.25
	30	4.31e+00	4.03e-02	2.74e+00	36.60	4.60	2.33
	31	6.17e-01	3.50e-02	6.20e-01	37.90	4.75	2.41
	32	1.83e-02	2.41e-03	2.34e-01	39.17	4.91	2.48
	33	3.80e-03	1.63e-03	1.57e-02	40.39	5.06	2.56
	34	7.28e-14	7.46e-14	1.20e-02	41.47	5.21	2.64
	35	-	-	1.23e-03	-	-	2.72
	36	-	-	3.99e-04	-	-	2.80
	37	-	-	7.46e-14	-	-	2.87

Tools 1-5 Summary

Tools 1-5 Summary

Method	# iterations	Cost of 1 iter.
Gradient Descent	$\frac{L}{L}\log(1/\epsilon)$	n
(GD)	$\frac{1}{\mu} \log(1/\epsilon)$	
Accelerated Gradient Descent	$\sqrt{\frac{L}{L}}\log(1/\epsilon)$	n
(AGD)	$\int \mu^{\log(1/\ell)}$	10
Proximal Gradient Descent	$\frac{L}{L}\log(1/\epsilon)$	n + Prox Step
(PGD)	$\mu^{10}S(1/C)$	
Stochastic Gradient Descent	$\left(\frac{\max_i L_i}{1-\varepsilon_i} + \frac{\sigma^2}{1-\varepsilon_i}\right) \log(1/\epsilon)$	1
(SGD)	$\left(\mu + \mu^2 \epsilon \right) \log(1/\epsilon)$	L
Randomized Coordinate Descent	$\frac{\max_{i} L_{i}}{\log(1/\epsilon)}$	1
(RCD)	$\mu \mu \log(1/C)$	1

Suffers from high variance of stochastic gradient

Tool 6

Variance Reduction

"SGD is too noisy, fix it!"

Variance Reduction

	Decreasing stepsizes	Mini- batching	Adjusting the direction	Importance sampling
How does it work?	Scaling down the noise	More samples, less variance	Duality (SDCA) or control Variate (SVRG)	Sample more important data (or parameters) more often
CONS:	Slow down; Hard to tune the stepsize	More work per iteration	A bit (SVRG) or a lot (SDCA) more memory needed	Might overfit probabilities to outliers
PROS:	Still converges Widely known	Parallelizable	Improved dependence on epsilon	Improved condition number for "variable" data

Good news: All tricks can be combined!

Tool 7 Importance Sampling

"Sample important data more often"

The Problem

Smooth and μ -strongly convex

P.R. and Martin Takáč On optimal probabilities in stochastic coordinate descent methods Optimization Letters 10(6), 1233-1243, 2016 (arXiv:1310.3438)

ARBITRARY SAMPLING:

i.i.d. subset of {1, 2,..., n} with arbitrary distribution

Choose a random set S_t of coordinates

For $i \in S_t$ do $x_i^{t+1} \leftarrow x_i^t - \frac{1}{v_i} (\nabla f(x^t))^\top e_i$ For $i \notin S_t$ do $x_i^{t+1} \leftarrow x_i^t$ $e_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} e_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$

Key Assumption

Parameters v_1, \ldots, v_n satisfy:

Complexity Theorem

$$t \geq \left(\max_{i} \frac{v_{i}}{p_{i}\mu}\right) \log\left(\frac{f(x^{0}) - f(x^{*})}{\epsilon\rho}\right)$$

strong convexity constant
$$\mathbf{P}_{i} = \mathbf{P}(i \in S_{t})$$

$$\mathbf{P}\left(f(x^{t}) - f(x^{*}) \leq \epsilon\right) \geq 1 - \rho$$

Uniform vs Optimal Sampling

More Work on Arbitrary Sampling

Zheng Qu, P.R. and Tong Zhang Quartz: Randomized dual coordinate ascent with arbitrary sampling In Advances in Neural Information Processing Systems 28, 2015

Zheng Qu and P.R. Coordinate descent with arbitrary sampling I: algorithms and complexity

Optimization Methods and Software 31(5), 829-857, 2016

Zheng Qu and P.R.

Coordinate descent with arbitrary sampling II: expected separable overapproximation Optimization Methods and Software 31(5), 858-884, 2016
Tool 8

Duality

"Solve the dual instead"

3-in1: Three Variance Reduction Strategies in 1 Method

The Problem

We will discuss duality without actually considering the dual problem. The basic proof technique (due to Shai Shalev-Shwartz, 2015) is dual-free.

$$\min_{x \in \mathbb{R}^d} \left[P(x) \stackrel{\text{def}}{=} \frac{1}{n} \sum_{i=1}^n f_i(a_i^\top x) + g(x) \right]$$

Motivation I

Motivation II

Algorithmic Ideas:

Simultaneously search for both x^* and y_1^*, \ldots, y_n^*

Try to do "something like"

$$y_i^{t+1} \leftarrow -\nabla f_i(a_i^{\top} x^t)$$

3

Maintain the relationship t = 1

Does not quite work: too "greedy"

$$x^t = \frac{1}{\mu n} \sum_{i=1}^n a_i y_i^t$$

Relevant Papers

Shai Shaley-Shwartz **SDCA** without duality *arXiv:1502.06177,* 2015 Dual-free SDCA idea

Dominik Csiba and P.R. Primal method for ERM with flexible mini-batching schemes and non-convex losses arXiv:1506.02227, 2015

dfSDCA

Same theoretical result, but for general g and using duality

Zheng Qu and P.R.

Coordinate descent with arbitrary sampling II: expected separable overapproximation

Optimization Methods and Software 31(5), 858-884, 2016

Standard Tools: Final Remarks

Methods Tools	GD 1847	AGD '83 '03	PGD '05	SGD '51	RCD '10	PCDM '12	SDCA '12	SVRG '14
1.Gradient Descent	YES	YES	YES	YES	YES	YES	YES	YES
2. Acceleration	NO	YES	NO	NO Katyusha '17	NO APPROX '13 ALPHA '14	NO	NO AccProx-SDCA '13 APCG '14	NO
3. Proximal Trick	NO PGM '05	NO	YES	NO	NO RCDC '11 APPROX '13	NO* PCDM '12	YES	NO ProxSVRG '14
4. Randomized Decomposition	NO	NO	NO	YES	YES	YES	YES	YES
5. Parallelism (Minibatching)	YES	YES	YES*	NO mSGD '13	NO PCDM '12 APPROX '13	YES	NO QUARTZ '15	NO mS2GD '14
6. Variance Reduction	\searrow		\searrow	NO SAG '11 SVRG '13 S2GD '13 SDCA '12	YES	YES	YES	YES
7. Duality	NO	NO	YES	YES	NO RCDC '11	NO PCDM '12	YES	NO
8. Importance Sampling	\searrow	$\left \right>$	$\left \right>$	NO	YES NSync '13 RCDC '11 ALPHA '14	NO Alpha '14	NO QUARTZ '15	NO
9. Curvature	NO	NO	NO	NO	NO SDNA '15	NO SDNA '15	NO SDNA '15	NO SBFGS '15

Methods Tools	NSync '13	dfSDCA '15
1.Gradient Descent	YES	YES
2. Acceleration	NO	NO
3. Proximal Trick	NO	NO QUARTZ '15
4. Randomized Decomposition	YES	YES
5. Parallelism (Minibatching)	YES	YES
6. Variance Reduction	YES	YES
7. Duality	NO	NO* QUARTZ '15
8. Importance Sampling	YES	YES
9. Curvature	NO	NO

SVRG	Accelerating stochastic gradient descent using predictive variance reduction R Johnson, T Zhang Advances in neural information processing systems, 315-323	480	2013
S2GD	Semi-stochastic gradient descent methods J Konečný, P Richtárik Frontiers in Applied Mathematics and Statistics	107 *	2017
ProxSVRG	A proximal stochastic gradient method with progressive variance reduction L Xiao, T Zhang SIAM Journal on Optimization 24 (4), 2057-2075	213	2014
mSGD	Mini-batch primal and dual methods for SVMs M Takáč, A Bijral, P Richtárik, N Srebro 30th International Conference on Machine Learning (ICML)	102 *	2013
QUARTZ	Quartz: Randomized dual coordinate ascent with arbitrary sampling Z Qu, P Richtárik, T Zhang Advances in Neural Information Processing Systems 28, 865873	67	2015
SAG	Minimizing finite sums with the stochastic average gradient M Schmidt, N Le Roux, F Bach Mathematical Programming (MAPR), 2017.	293 *	2013
ALPHA	Coordinate descent with arbitrary sampling I: algorithms and complexity Z Qu, P Richtárik Optimization Methods and Software 31 (5), 829-857	56	2016
NSync	On optimal probabilities in stochastic coordinate descent methods P Richtárik, M Takáč Optimization Letters 10 (6), 1233-1243	46	2016
SPDC	Stochastic Primal-Dual Coordinate Method for Regularized Empirical Risk Minimization. Y Zhang, L Xiao ICML, 353-361	78	2015

RCDC	Iteration complexity of randomized block-coordinate descent methods for minimizing a composite function P Richtarik, M Takáč Mathematical Programming 144 (2), 1-38	355	2014
PCDM	Parallel coordinate descent methods for big data optimization P Richtárik, M Takáč Mathematical Programming 156 (1), 433-484	228	2016
APPROX	Accelerated, parallel and proximal coordinate descent O Fercoq, P Richtárik SIAM Journal on Optimization 25 (4), 1997-2023	143	2015
ProxSVRG	A proximal stochastic gradient method with progressive variance reduction L Xiao, T Zhang SIAM Journal on Optimization 24 (4), 2057-2075	213	2014
CoCoA+	Adding vs. averaging in distributed primal-dual optimization C Ma, V Smith, M Jaggi, MI Jordan, P Richtárik, M Takáč 32nd International Conference on Machine Learning (ICML)	45	2015
SDCA	Stochastic dual coordinate ascent methods for regularized loss minimization S Shalev-Shwartz, T Zhang Journal of Machine Learning Research 14 (Feb), 567-599	428	2013
Katyusha	Katyusha: The first direct acceleration of stochastic gradient methods Z Allen-Zhu arXiv preprint arXiv:1603.05953	51 *	2016
Iprox-SMD	Stochastic optimization with importance sampling for regularized loss minimization P Zhao, T Zhang Proceedings of the 32nd International Conference on Machine Learning (ICML	89	2015

GD, AGD	Introductory lectures on convex optimization: A basic course Y Nesterov Springer Science & Business Media	2564	2013
AGD	Smooth minimization of non-smooth functions Y Nesterov Mathematical programming 103 (1), 127-152	1686	2005
PGD	Gradient methods for minimizing composite objective function Y Nesterov Core	1288 *	2007
RCD	Efficiency of coordinate descent methods on huge-scale optimization problems Y Nesterov SIAM Journal on Optimization 22 (2), 341-362	581	2012
SBFGS	Stochastic block BFGS: squeezing more curvature out of data RM Gower, D Goldfarb, P Richtárik 33rd International Conference on Machine Learning (ICML)	25	2016
APCG	An accelerated proximal coordinate gradient method Q Lin, Z Lu, L Xiao Advances in Neural Information Processing Systems, 3059-3067	74	2014
Acc Prox-SDCA	Accelerated proximal stochastic dual coordinate ascent for regularized loss minimization S Shalev-Shwartz, T Zhang International Conference on Machine Learning, 64-72	135	2014
mS2GD	Mini-batch semi-stochastic gradient descent in the proximal setting J Konečný, J Liu, P Richtárik, M Takáč IEEE Journal of Selected Topics in Signal Processing 10 (2), 242-255	68	2015

Part 3 Stochastic Methods for Linear Systems

The Plan

Plan

- Quick recall of ERM formulation of linear systems
- Four stochastic reformulations (not related to ERM)
- **Basic method** (solves primal ERM)
- Parallel and accelerated methods (solve primal ERM)
- **Duality** (method for solving dual ERM)
- **EXTRA TOPIC: Special cases** (specializing some parameters of the method)
- EXTRA TOPIC: Stochastic preconditioning (vast generalization of importance sampling)
- EXTRA TOPIC: Stochastic matrix inversion

P.R. and Martin Takáč **Stochastic Reformulations of Linear Systems: Algorithms and Convergence Theory** *arXiv:1706.01108,* 2017

Algorithms

Basic Method

- Stochastic gradient descent
- Stochastic Newton method
- Stochastic proximal point method
- Stochastic preconditioning method
- Stochastic fixed point method
- Stochastic projection method

Dual of the Basic Method

Stochastic dual subspace ascent

Parallel Methods

Accelerated Methods

Selected Special Cases (Basic Method)

- Randomized Kaczmarz Method
- Stochastic coordinate descent
- Randomized Newton method
- Stochastic Gaussian descent
- Stochastic spectral descent

Quick Recall: Linear Systems as ERM

Linear Systems (Best Approximation Version) as a Primal ERM Problem

$$g(x) = \frac{1}{2} ||x - x^{0}||_{B}^{2}$$

$$\min_{x \in \mathbb{R}^{d}} \left[P(x) \stackrel{\text{def}}{=} \frac{1}{n} \sum_{i=1}^{n} f_{i}(a_{i}^{\top}x) + g(x) \right]$$

$$f_{i}(t) = 1_{\{b_{i}\}}(t) \stackrel{\text{def}}{=} \begin{cases} 0 & \text{for } t = b_{i}, \\ 0 & \text{for } t = b_{i}, \end{cases}$$

ise.

Primal Problem: Best Approximation

Dual Problem

Recall convex conjugate:

$$f^*(z) \stackrel{\text{def}}{=} \sup_{x \in \mathbb{R}^d} \left\{ \langle z, x \rangle - f(x) \right\}$$

$$f_i(t) = 1_{\{b_i\}}(t)$$
 $f_i^*(t) = b_i t$

 $g(x) = \frac{1}{2} \|x - x^0\|_B^2 \qquad g^*(x) = \langle x^0, x \rangle + \frac{1}{2} \|x\|_{B^{-1}}^2$

$$\max_{y \in \mathbb{R}^n} \left[D(y) \stackrel{\text{def}}{=} \left\langle b - Ax^0, \frac{y}{n} \right\rangle - \frac{1}{2} \left\| A^\top \frac{y}{n} \right\|_{B^{-1}}^2 \right]$$

Unconstrained (non-strongly) concave quadratic maximization

Recovering Primal Solution from Dual Solution

Recall:

$$x^* = \nabla g^* \left(\frac{1}{n} A^\top y^*\right)$$

$$g^*(x) = \langle x^0, x \rangle + \frac{1}{2} \|x\|_{B^{-1}}^2$$

$$\nabla g^*(x) = x^0 + B^{-1}x$$

$$x^* = x^0 + \frac{1}{n}B^{-1}A^{\top}y^*$$

Reformulation 1: Stochastic Optimization

Change of Notation

A System of Linear Equations

m equations with n unknowns

Assumption: The system is consistent (i.e., a solution exists)

Stochastic Reformulations of Linear Systems

Theorem

- a) These 4 problems have the same solution sets
- b) Weak necessary & sufficient conditions for the solution set to be equal to $\{x : Ax = b\}$

Reformulation 1: Stochastic Optimization

Stochastic Optimization

Stochastic function (unbiased estimator of function *f*)

Minimize
$$f(x) \stackrel{\text{def}}{=} \mathbf{E}_{S \sim \mathcal{D}}[f_S(x)]$$

$$f_{S}(x) = \frac{1}{2} \|x - \Pi_{\mathcal{L}_{S}}^{B}(x)\|_{B}^{2} = \frac{1}{2} (Ax - b)^{\top} H_{S}(Ax - b)$$
$$\mathcal{L}_{S} = \{x : S^{\top}Ax = S^{\top}b\}$$
$$H_{S} \stackrel{\text{def}}{=} S(S^{\top}AB^{-1}A^{\top}S)^{\dagger}S^{\top}$$
Sketched system

Special Case

Expectation becomes average over *m* functions:

Minimize
$$f(x) := \frac{1}{m} \sum_{i=1}^{m} \frac{1}{\|A_{:i}\|^2} (A_{:i}x - b_i)^2$$

Special Case: Randomized Algorithm

Reformulation 2: Stochastic Linear System

Stochastic Linear System

Special Case

 ${\mathcal D}$ is defined by: $S=e_i$ with probability 1/m B=I (identity matrix)

Special Case: Algorithm

Algorithm (Stochastic Preconditioning Method)

1. Choose random $i \in \{1, 2, ..., m\}$ 2. $x^{t+1} = \arg \min_{x \in \mathbb{R}^n} \{ \|x - x^t\| : P_i A x = P_i b \}$

See also: Sketch & Project Method [Gower & Richtarik, 2015] **Stochastic preconditioner** (unbiased estimator of the preconditioner *P*)

$$\mathbf{E}[P_i] = P$$
Reformulation 3: Stochastic Fixed Point Problem

Stochastic Fixed Point Problem

Special Case

 ${\mathcal D}$ is defined by: $S=e_i$ with probability 1/m B=I (identity matrix)

Special Case: Algorithm

Algorithm (Stochastic Fixed Point Method)

1. Choose random
$$i \in \{1, 2, \ldots, m\}$$

2.
$$x^{t+1} = \phi_i(x^t)$$

Stochastic operator (unbiased estimator of the fixed point operator)

$$\mathbf{E}[\phi_i(x)] = \phi(x)$$

Reformulation 4: Stochastic Intersection Problem

Stochastic Intersection of Sets

"Sketched" system:
$$S^{\top}Ax = S^{\top}b$$
 $S \sim \mathcal{D}$
Stochastic set: $\mathcal{L}_S = \{x \ : \ S^{\top}Ax = S^{\top}b\}$

Definition

Stochastic intersection of the sets $\{\mathcal{L}_S\}_{S\sim\mathcal{D}}$ is the set

$$\bigcap_{S \sim \mathcal{D}} \mathcal{L}_S \stackrel{\text{def}}{=} \{ x : \mathbf{P}(x \in \mathcal{L}_S) = 1 \}$$

Discrete Case: Stochastic Intersection = Classical Intersection

\mathcal{D} is discrete: $S = S_i$ with probability $p_i > 0$

 $\{x : \mathbf{P}(x \in \mathcal{L}_S) = 1\} = \bigcap \mathcal{L}_{S_i}$ 2

Stochastic intersection of sets

"Classical" intersection of sets

Indicator Function of a Set $1_{\mathcal{M}}(x) = \begin{cases} 0 & x \in \mathcal{M} \\ +\infty & \text{otherwise.} \end{cases}$

Indicator function of the stochastic set:

$$1_{\mathcal{L}_S}(x) = \begin{cases} 0 & x \in \mathcal{L}_S \\ +\infty & \text{otherwise} \end{cases}$$

Stochastic Intersection

$$\mathbf{Lemma}$$

$$\mathbf{E}_{S\sim\mathcal{D}}\left[1_{\mathcal{L}_{S}}(x)\right] = \begin{cases} 0 & x \in \mathcal{L}_{S} \\ +\infty & \text{otherwise.} \end{cases}$$

$$\mathbf{P}(x \in \mathcal{L}_{S}) = 1 \\ +\infty & \text{otherwise.} \end{cases}$$

That is, the expectation of the indicator functions of the stochastic sets is an indicator function of the stochastic intersection those sets:

$$\mathbf{E}_{S\sim\mathcal{D}}\left[\mathbf{1}_{\mathcal{L}_S}(x)\right] = \mathbf{1}_{\bigcap_{S\sim\mathcal{D}}\mathcal{L}_S}(x)$$

Stochastic Intersection Problem **Stochastic set:** $\mathcal{L}_S = \{x : S^\top A x = S^\top b\}$ Find $x \in \bigcap_{S \sim \mathcal{D}} \mathcal{L}_S$ Under some weak assumptions (e.g., $\mathbf{E}[H_S] \succ 0$ is sufficient) Lemma $\mathcal{L} = \bigcap_{S \sim \mathcal{D}} \mathcal{L}_S$ Solution set of the linear system: $\mathcal{L} \stackrel{\text{def}}{=} \{x : Ax = b\}$

Special Case

 ${\mathcal D}$ is defined by: $S=e_i$ with probability 1/m B=I (identity matrix)

Special Case: Algorithm

Algorithm (Stochastic Projection Method)

1. Choose random $i \in \{1, 2, ..., m\}$ 2. $x^{t+1} = \prod_{\mathcal{L}_i} (x^t)$

 \mathcal{L}_1

Projection onto \mathcal{L}_i (Stochastic set)

T. Strohmer and R. Vershynin. **A Randomized Kaczmarz Algorithm with Exponential Convergence**. *Journal of Fourier Analysis and Applications* 15(2), pp. 262–278, 2009

Randomized Kaczmarz method (2009)

 x^4

 $x^3 x^1$

 $x^{\hat{2}}$

 x^0

Summary

Deterministic concept	Decomposition	Stochastic estimate
Function f	$f(x) = \frac{1}{m} \sum_{i=1}^{m} f_i(x)$	Stochastic function $f_i(x)$
Gradient $\nabla f(x)$	$\nabla f(x) = \frac{1}{m} \sum_{i=1}^{m} \nabla f_i(x)$	Stochastic gradient $\nabla f_i(x)$
Hessian $\nabla^2 f(x)$	$\nabla^2 f(x) = \frac{1}{m} \sum_{i=1}^m \nabla^2 f_i(x)$	Stochastic Hessian $\nabla^2 f_i(x)$
Preconditioned system PAx = Pb	$P = \frac{1}{m} \sum_{i=1}^{m} P_i$	Stochastic system $P_iAx = P_ib$
Preconditioner P	$P = \frac{1}{m} \sum_{i=1}^{m} P_i$	Stochastic preconditioner P_i
Operator $\phi(x)$	$\phi(x) = \frac{1}{m} \sum_{i=1}^{m} \phi_i(x)$	Stochastic operator $\phi_i(x)$
Set \mathcal{L}	$\mathcal{L} = igcap_{i=1}^m \mathcal{L}_i$	Stochastic set \mathcal{L}_i

Stochastic Reformulations

Reformulation	Key concepts	Algorithm (special case)
Stochastic optimization problem	stochastic function	Stochastic gradient descent
Minimize $\frac{1}{m} \sum_{i=1}^{m} f_i(x)$	stochastic gradient	$x^{t+1} = x^t - \nabla f_i(x^t)$
<i>i</i> =1	stochastic Hessian	
Stochastic linear system	stochastic system	Stochastic precond. method
Solve $\left(\frac{1}{m}\sum_{i=1}^{m}P_i\right)Ax = \left(\frac{1}{m}\sum_{i=1}^{m}P_i\right)b$	stochastic precondition.	$x^{t+1} = \arg\min_{x : P_i A x = P_i b} x - x^t $
Stochastic fixed point problem		Stochastic fixed point method
Solve $x = \frac{1}{m} \sum_{i=1}^{m} \phi_i(x)$	stochastic operator	$x^{t+1} = \phi_i(x^t)$
Stochastic intersection problem		Stochastic projection method
Find $x \in \bigcap_{i=1}^{m} \mathcal{L}_i$	stochastic set	$x^{t+1} = \Pi_{\mathcal{L}_i}(x^t)$

Basic Method

Methods Beyond the Special Case

We proposed some "natural" methods in the special case:

 ${\mathcal D}$ is defined by: $S=e_i$ with probability 1/m B=I (identity matrix)

We now proceed to the general case:

- General \mathcal{D}
- General B
- Introduction of a stepise $\omega > 0$
- more methods: stochastic Newton, stochastic proximal point method

Basic Method

Stochastic Gradient Descent

Stochastic Newton Method

Stochastic Proximal Point Method

Stochastic Optimization Problem

Minimize $f(x) \stackrel{\text{def}}{=} \mathbf{E}_{S \sim \mathcal{D}}[f_S(x)]$

Stochastic Preconditioning Method

Stochastic Linear System

Solve
$$PAx = Pb$$

 $P = \mathbf{E}_{S \sim \mathcal{D}}[B^{-1}A^{\top}H_S]$
 $S^t \sim \mathcal{D}$
 $x^{t+1} = \arg \min_{x : P_{S^t}Ax = P_{S^t}b} ||x - x^t||_B$

Stochastic preconditioner (unbiased estimator of *P*)

Stochastic Fixed Point Method

Stochastic Fixed Point Problem

Solve $x = \phi(x)$

$$\phi(x) = \mathbf{E}_{S \sim \mathcal{D}} \left[\phi_S(x) \right]$$
$$\phi_S(x) = \Pi^B_{\mathcal{L}_S}(x)$$

Stochastic operator (unbiased estimator of the fixed point operator $\phi(x)$)

$$S^t \sim \mathcal{D}$$

$$x^{t+1} = \omega \phi_{S^t}(x^t) + (1-\omega)x^t$$

Relaxation parameter

Stochastic Projection Method

Stochastic Intersection Problem

Find
$$x \in \bigcap_{S \sim \mathcal{D}} \mathcal{L}_S$$

Stochastic projection map

Equivalence & Exactness

Equivalence of Reformulations

Equivalence of Algorithms

Exactness of Reformulations

Summary

Deterministic concept	Decomposition	Stochastic estimate
Function f	$f(x) = \mathbf{E}\left[f_S(x)\right]$	Stochastic function $f_S(x) = \frac{1}{2} Ax - b ^2_{H_S}$
Gradient $\nabla f(x)$	$\nabla f(x) = \mathbf{E} \left[\nabla f_S(x) \right]$	Stochastic gradient $\nabla f_S(x) = A^{\top} H_S(Ax - b)$
Hessian $\nabla^2 f(x)$	$\nabla^2 f(x) = \mathbf{E} \left[\nabla^2 f_S(x) \right]$	Stochastic Hessian $\nabla^2 f_S(x) = A^\top H_S A$
Preconditioner P	$P = \mathbf{E}[P_S]$	Stochastic preconditioner $P_S = B^{-1} A^\top H_S$
Preconditioned system PAx = Pb	$PA = \mathbf{E}[P_S A]$ $Pb = \mathbf{E}[P_S b]$	Stochastic system $P_S A x = P_S b$
Operator $\phi(x)$	$\phi(x) = \mathbf{E} \left[\Pi^B_{\mathcal{L}_S}(x) \right]$	Stochastic operator $\phi_S(x) = \Pi^B_{\mathcal{L}_S}(x)$
Set \mathcal{L}	$\mathcal{L} = \bigcap_{S \sim \mathcal{D}} \mathcal{L}_S$ $\mathbf{E}_{S \sim \mathcal{D}} \left[1_{\mathcal{L}_S}(x) \right] = 1_{\bigcap_{S \sim \mathcal{D}} \mathcal{L}_S}(x)$	Stochastic set $\mathcal{L}_S = \{x : S^\top A x = S^\top b\}$

REFORMULATION	BASIC METHOD	
Stochastic optimization problem	SGD $x^{t+1} = x^t - \omega \nabla f_{S^t}(x^t)$	
Minimize f(x)	SNM $x^{t+1} = x^t - \omega (\nabla^2 f_{S^t})^{\dagger_B} \nabla f_{S^t}(x^t)$	
$f(x) = \mathbf{E}[f_S(x)]$	SPPM $x^{t+1} = \arg\min_{x \in \mathbb{R}^n} \left\{ f_{S^t}(x) + \frac{1-\omega}{2\omega} \ x - x^t\ _B^2 \right\}$	
Stochastic linear system	Stochastic Preconditioning Method (SPM)	
Solve $PAx = Pb$ $P = \mathbf{E}[P_S]$	$x^{t+1} = \arg\min_{x : P_{S^t} A x = P_{S^t} b} \ x - x^t\ _B$	
Stochastic fixed point problem	Stochastic Fixed Point Method (SFPM)	
Solve $x = \phi(x)$ $\phi(x) = \mathbf{E}[\phi_S(x)]$	$x^{t+1} = \omega \phi_{S^t}(x^t) + (1-\omega)x^t$	
Stochastic intersection problem	Stochastic Projection Method (SPM)	
Find $x \in \mathcal{L}$ $\mathcal{L} = \bigcap_{S \sim \mathcal{D}} \mathcal{L}_S$	$x^{t+1} = \omega \Pi^B_{\mathcal{L}_{S^t}}(x^t) + (1-\omega)x^t$	

Convergence

Key Matrix

(captures the convergence of the basic method)

$$W \stackrel{\text{def}}{=} B^{-1/2} A^{\top} \mathbf{E}_{S \sim \mathcal{D}} [H_S] A B^{-1/2}$$

$$W = U \Lambda U^{\top} = \sum_{i=1}^{n} \lambda_i u_i u_i^{\top}$$

$$H_S = S(S^{\top} A B^{-1} A^{\top} S)^{\dagger} S^{\top}$$

$$H_S = S(S^{\top} A B^{-1} A^{\top} S)^{\dagger} S^{\top}$$
Eigenvalue
$$Smallest \text{ nonzero eigenvalue:} \quad \lambda_{\min}^{+}$$
Largest eigenvalue: λ_{\max}

Basic Method: Complexity

Basic Method: Complexity

Convergence of Expected Iterates

$$t \ge \frac{1}{\lambda_{\min}^{+}} \log\left(\frac{1}{\epsilon}\right) \quad \stackrel{\omega=1}{\longrightarrow} \quad \|\mathbf{E}[x^{t} - x^{*}]\|_{B}^{2} \le \epsilon$$
$$t \ge \frac{\lambda_{\max}}{\lambda_{\min}^{+}} \log\left(\frac{1}{\epsilon}\right) \quad \stackrel{\omega=1/\lambda_{\max}}{\longrightarrow} \quad \|\mathbf{E}[x^{t} - x^{*}]\|_{B}^{2} \le \epsilon$$

L2 Convergence

$$t \ge \frac{1}{\lambda_{\min}^+} \log\left(\frac{1}{\epsilon}\right) \quad \stackrel{\omega=1}{\longrightarrow} \quad \mathbf{E}\left[\|x^t - x^*\|_B^2\right] \le \epsilon$$

Parallel & Accelerated Methods
Parallel Method

Parallel Method

"Run 1 step of the basic method from x^t several times independently, and average the results."

$$x^{t+1} = \frac{1}{\tau} \sum_{i=1}^{\tau} \phi_{\omega}(x^{t}, S_{i}^{t})$$

One step of the basic method from x^t

i.i.d.

Parallel Method: Complexity

L2 Convergence

$$\mathbf{E}\left[\|x^t - x^*\|_B^2\right] \le \epsilon$$

Accelerated Method

Accelerated Method

One step of the basic method from x^{t-1}

Accelerated Method: Complexity

Convergence of Iterates

Acceleration Accelerates

More Relaxation Requires More Acceleration

Detailed Complexity Results

Alg.	ω	τ	γ	Quantity	Rate	Complexity	Theorem
1	1	-	-	$\ \mathbb{E} [x_k - x_*] \ _{\mathbf{B}}^2$	$(1-\lambda_{\min}^+)^{2k}$	$1/\lambda_{\min}^+$	4.3, 4.4, 4.6
1	$1/\lambda_{ m max}$	-	-	$\ \operatorname{E}\left[x_{k}-x_{*}\right]\ _{\mathbf{B}}^{\overline{2}}$	$(1-1/\zeta)^{2k}$	ζ	4.3, 4.4, 4.6
1	$\frac{2}{\lambda^+$, $+\lambda^-$	-	-	$\ \operatorname{E}\left[x_{k}-x_{*} ight]\ _{\mathbf{B}}^{2}$	$(1-2/(\zeta+1))^{2k}$	ζ	4.3, 4.4, 4.6
1	1	_	-	$\mathbb{E}\left[\ x_k - x_*\ _{\mathbf{P}}^2\right]$	$(1-\lambda_{\min}^+)^k$	$1/\lambda_{\min}^+$	4.8
1	1	-	-	$\mathrm{E}\left[f(x_k)\right]$	$(1-\lambda_{\min}^{+})^k$	$1/\lambda_{\min}^{+}$	4.10
2	1	τ	-	$\mathrm{E}\left[\ x_k - x_*\ _{\mathbf{B}}^2\right]$	$\left(1-\lambda_{\min}^+\left(2-\xi(au) ight) ight)^k$		5.1
2	$1/\xi(au)$	τ	-	$\mathrm{E}\left[\ x_k - x_*\ _{\mathbf{B}}^2\right]$	$\left(1-rac{\lambda_{\min}^+}{\xi(au)} ight)^k$	$\xi(au)/\lambda_{\min}^+$	5.1
2	$1/\lambda_{ m max}$	∞	-	$\mathrm{E}\left[\ x_k - x_*\ _{\mathbf{B}}^2\right]$	$(1-1/\zeta)^k$	ζ	5.1
3	1	-	$\frac{2}{1+\sqrt{0.99\lambda_{\min}^+}}$	$\ \mathbf{E}\left[x_k - x_*\right]\ _{\mathbf{B}}^2$	$\left(1-\sqrt{0.99\lambda_{\min}^+} ight)^{2k}$	$\sqrt{1/\lambda_{\min}^+}$	5.3
3	$1/\lambda_{ m max}$	-	$\frac{2}{1+\sqrt{0.99/\zeta}}$	$\ \operatorname{E}\left[x_{k}-x_{*} ight]\ _{\mathbf{B}}^{2}$	$\left(1-\sqrt{0.99/\zeta} ight)^{2k}$	$\sqrt{\zeta}$	5.3

Table 1: Summary of the main complexity results. In all cases, $x_* = \Pi_{\mathcal{L}}^{\mathbf{B}}(x_0)$ (the projection of the starting point onto the solution space of the linear system). "Complexity" refers to the number of iterations needed to drive "Quantity" below some error tolerance $\epsilon > 0$ (we suppress a $\log(1/\epsilon)$ factor in all expressions in the "Complexity" column). In the table we use the following expressions: $\xi(\tau) = \frac{1}{\tau} + (1 - \frac{1}{\tau})\lambda_{\max}$ and $\zeta = \lambda_{\max}/\lambda_{\min}^+$.

Summary

Summary

- 4 Equivalent stochastic reformulations of a linear system
 - Stochastic optimization
 - Stochastic fixed point problem
 - Stochastic linear system
 - Probabilistic intersection
- 3 Algorithms
 - Basic (SGD, stochastic Newton method, stochastic fixed point method, stochastic proximal point method, stochastic projection method, ...)
 - Parallel
 - Accelerated
- Iteration complexity guarantees for various measures of success
 - Expected iterates (closed form)
 - L1 / L2 convergence
 - Convergence of *f*; ergodic ...

Related Work

Basic method with unit stepsize and full rank A:

Robert Mansel Gower and P.R. **Randomized Iterative Methods for Linear Systems** *SIAM J. Matrix Analysis & Applications* 36(4):1660-1690, 2015

Removal of full rank assumption + duality:

Robert Mansel Gower and P.R. **Stochastic Dual Ascent for Solving Linear Systems** *arXiv:1512.06890*, 2015

- 2017 IMA Fox Prize (2nd Prize) in Numerical Analysis
- Most downloaded SIMAX paper

Inverting matrices & connection to Quasi-Newton updates:

Robert Mansel Gower and P.R. **Randomized Quasi-Newton Methods are Linearly Convergent Matrix Inversion Algorithms** *arXiv:1602.01768*, 2016

Computing the pseudoinverse:

Robert Mansel Gower and P.R. Linearly Convergent Randomized Iterative Methods for Computing the Pseudoinverse *arXiv:1612.06255*, 2016

Application in machine learning:

Robert Mansel Gower, Donald Goldfarb and P.R. Stochastic Block BFGS: Squeezing More Curvature out of Data ICML 2016

Duality: Basic Method

Robert Mansel Gower (Edinburgh -> INRIA)

Robert Mansel Gower and P.R.[GR'15a]Randomized Iterative Methods for Linear SystemsSIAM Journal on Matrix Analysis and Applications 36(4):1660-1690, 2015

Robert Mansel Gower and P.R. **Stochastic Dual Ascent for Solving Linear Systems** *arXiv:1512.06890*, 2015 [GR'15b]

Recall the Initial Problem: Solve a Linear System

Assumption 1

The system is consistent (i.e., has a solution)

Optimization Formulation

Primal Problem

 $x^* = \nabla q^* (A^\top y^*)$

Dual Correspondence Lemma

Primal Method = Linear Image of the Dual Method

Convergence

Main Assumption

Comple of SDS	xity SA	$\rho := 1 - 1$	$-\lambda_{\min}^+\left(E\right)$	3-1/2 ₇	$A^{ op} \mathbf{E}[H]$ $U_0 =$	$[H]AB^{-1/2}$ $\frac{1}{2} x^0 - x^* $	$\Big)$ $\Big _{B}^{2}$
Theorem [Go Primal iterates	ower & R	E $\left[\frac{1}{2}\right x$	$ x^t - x^* _B^2$	$\left[\cdot \right] \leq \rho^t$	$^{2}U_{0}$	GR'15a	
Residual:	$\mathbf{E}[\ $	$Ax^t - b \ $	$_B] \le ho^{t/2}$	$ A _B$	$\sqrt{2 \times 1}$	$\overline{U_0}$	
Dual error:		$\mathbf{E}[OPT]$	$T - D(y^t)$)] ≤ ρ¹	$^{t}U_{0}$		
Primal error:	$\mathbf{E}[P(x^t)$	-OPT]	$\leq ho^t U_0$ –	$+ 2\rho^{t/2}$	\sqrt{OF}	$\overline{PT \times U_0}$	

Duality gap: $\mathbf{E}[P(x^t) - D(y^t)] \le 2\rho^t U_0 + 2\rho^{t/2} \sqrt{OPT \times U_0}$

The Rate: Lower and Upper Bounds

Extensions

Extensions 1

Robert Mansel Gower and P.R. **Randomized Quasi-Newton Methods are Linearly Convergent** Matrix Inversion Algorithms *arXiv:1602.01768*, 2016 Matrix Inversion

& Quasi-Newton Updates

Nicolas Loizou and P.R. **A New Perspective on Randomized Gossip Algorithms** In Proceedings of The 4th IEEE Global Conference on Signal Processing, 2016

> Randomized Gossip Algorithms

Extensions 2

Robert Mansel Gower, Donald Goldfarb and P.R. **Stochastic Block BFGS: Squeezing More Curvature Out of Data** In: *Proceedings of the 33th International Conference on Machine Learning, pp 1869-1878,* 2016

ERM

P.R. and Martin Takáč Stochastic Reformulations of Linear Systems: Algorithms and Convergence Theory *arXiv:1706.01108*, 2017

Stuff I talked about earlier...

Duality: More Insights

1. Relaxation Viewpoint "Sketch and Project" $\|x\|_B^2 = x^\top B x$ $\arg\min_{x\in\mathbb{R}^n} \|x-x^t\|_B^2$ r^{t+1} subject to $S^{\top}Ax = S^{\top}b$ *S* = identity matrix convergence in 1 step $\min_{x} \{ \|x - x^0\| : Ax = 0 \}$ E.S. Coakley, V. Rokhlin and M. Tygert. A Fast Randomized Algorithm for Orthogonal Projection. SIAM Journal on Scientific Computing 33(2), pp. 849–868, 2011

2. Approximation Viewpoint "Constrain and Approximate"

4. Algebraic Viewpoint "Random Linear Solve"

5. Algebraic Viewpoint "Random Update"

pseudo-inverse

6. Analytic Viewpoint "Random Fixed Point"

 $Z := A^{\top} S (S^{\top} A B^{-1} A^{\top} S)^{\dagger} S^{\top} A$ $x^{t+1} - x^* = (I - B^{-1}Z)(x^t - x^*)$ **Random Iteration Matrix** $(B^{-1}Z)^2 = B^{-1}Z$ $(I - B^{-1}Z)^2 = I - B^{-1}Z$ $x^* + \mathbf{Null}(S^T A)$ x^{t+1} • *x** $B^{-1}Z$ projects orthogonally onto **Range** $(B^{-1}A^{\top}S)$ $x^t + \mathbf{Range}(B^{-1}A^TS)$ $I - B^{-1}Z$ projects orthogonally onto $\mathbf{Null}(S^{\top}A)$

EXTRA TOPIC: Special Cases

Special Case 1: Randomized Kaczmarz Method

Randomized Kaczmarz (RK) Method

M. S. Kaczmarz. Angenaherte Auflosung von Systemen linearer Gleichungen, Bulletin International de l'Académie Polonaise des Sciences et des Lettres. Classe des Sciences Mathématiques et Naturelles. Série A, Sciences Mathématiques 35, pp. 355–357, 1937

Kaczmarz method (1937)

T. Strohmer and R. Vershynin. **A Randomized Kaczmarz Algorithm with Exponential Convergence**. *Journal of Fourier Analysis and Applications* 15(2), pp. 262–278, 2009

Randomized Kaczmarz method (2009)

RK was analyzed for $p_i =$

RK arises as a special case for parameters B, S set as follows:

$$B = I$$
 $S = e^i = (0, \dots, 0, 1, 0, \dots, 0)$ with probability p_i

$$x^{t+1} = x^t - \frac{A_{i:}x^t - b_i}{\|A_{i:}\|_2^2} (A_{i:})^T$$
RK: Derivation and Rate

General Method

$$x^{t+1} = x^t - B^{-1}A^T S (S^T A B^{-1} A^T S)^{\dagger} S^T (A x^t - b)$$

Special Choice of Parameters B = I $S = e^{i}$ $x^{t+1} = x^{t} - \frac{A_{i:}x^{t} - b_{i}}{\|A_{i:}\|_{2}^{2}} (A_{i:})^{T}$

Complexity Rate

$$p_{i} = \frac{\|A_{i:}\|^{2}}{\|A\|_{F}^{2}} \qquad \mathbf{E}\left[\|x^{t} - x^{*}\|_{2}^{2}\right] \le \left(1 - \frac{\lambda_{\min}\left(A^{T}A\right)}{\|A\|_{F}^{2}}\right)^{t} \|x^{0} - x^{*}\|_{2}^{2}$$

RK = SGD with a "smart" stepsize

$$Ax = b \quad \text{vs} \quad \min_{x} \frac{1}{2} ||Ax - b||^{2}$$

$$f(x) = \sum_{i=1}^{m} p_{i}f_{i}(x) = \mathbf{E}_{i}[f_{i}(x)]$$

$$f_{i}(x) = \frac{1}{2p_{i}}(A_{i:}x - b_{i})^{2}$$

$$t^{t+1} = x^{t} - \frac{A_{i:}x^{t} - b_{i}}{||A_{i:}||_{2}^{2}}(A_{i:})^{T}$$

$$x^{t+1} = x^{t} - h^{t}\nabla f_{i}(x^{t})$$

$$= x^{t} - \frac{h^{t}}{p_{i}}(A_{i:}x^{t} - b_{i})(A_{i:})^{T}$$

RK is equivalent to applying SGD with a specific (smart!) constant stepsize! $x^{t+1} = \arg\min_{x \in \mathbb{R}^n} \|x - x^*\|_2^2 \quad \text{s.t.} \quad x = x^t + y(A_{i:})^T, \quad y \in \mathbb{R}$

 \mathcal{X}

$$\min_{x \in \mathbb{R}^4} \frac{1}{2} ||x - c||_2^2 \qquad c_2 = 20$$
subject to $Ax = 0$

$$A = \begin{pmatrix} 1 & -1 & 0 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 1 & 0 & -1 \end{pmatrix} \leftarrow c_3 = 30$$

$$\min_{x \in \mathbb{R}^4} \frac{1}{2} ||x - c||_2^2 \qquad c_2 = 25$$
subject to $Ax = 0$

$$A = \begin{pmatrix} 1 & -1 & 0 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 1 & 0 & -1 \end{pmatrix} \qquad (3) \quad c_4 = 40$$

$$c_3 = 25$$

$$\min_{x \in \mathbb{R}^4} \frac{1}{2} ||x - c||_2^2 \qquad c_2 = 17.5$$
subject to $Ax = 0$

$$A = \begin{pmatrix} 1 & -1 & 0 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 1 & 0 & -1 \end{pmatrix} \leftarrow c_3 = 25$$

$$\min_{x \in \mathbb{R}^4} \frac{1}{2} ||x - c||_2^2$$
subject to $Ax = 0$

$$A = \begin{pmatrix} 1 & -1 & 0 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 1 & 0 & -1 \end{pmatrix}$$

$$c_1 = 17.5 \\ c_1 = 17.5 \\ c_2 = 21.25 \\ c_1 = 17.5 \\ c_2 = 21.25 \\ c_3 = 21.25 \\ c_4 = 40 \\ c_3 = 21.25 \\ c_4 = 40 \\ c_5 = 21.25 \\ c_5 = 21.25 \\ c_5 = 21.25 \\ c_6 = 21.25 \\ c_7 = 21.25 \\ c_8 = 21.25$$

RK: Further Reading

D. Needell. Randomized Kaczmarz solver for noisy linear systems. *BIT* 50 (2): 395-403, 2010

D. Needell and J. Tropp. **Paved with good intentions: analysis of a randomized block Kaczmarz method.** *Linear Algebra and its Applications* 441:199-221, 2012

D. Needell, N. Srebro and R. Ward. **Stochastic gradient descent,** weighted sampling and the randomized Kaczmarz algorithm. *Mathematical Programming* 155(1-2):549-573, 2016

A. Ramdas. Rows vs Columns for Linear Systems of Equations – Randomized Kaczmarz or Coordinate Descent? *arXiv:1406.5295*, 2014

Special Case 2: Randomized Coordinate Descent

Randomized Coordinate Descent (RCD)

A. S. Lewis and D. Leventhal. Randomized methods for linear constraints: convergence rates and conditioning. *Mathematics of OR* 35(3), 641-654, 2010 (arXiv:0806.3015)

RCD (2008)

$$\min_{x \in \mathbb{R}^n} \left[f(x) = \frac{1}{2} x^T A x - b^T x \right]$$

$$x^* = A^{-1} b$$
Assume: Positive definite

RCD arises as a special case for parameters *B*, *S set as follows*:

B = A $S = e^i = (0, \dots, 0, 1, 0, \dots, 0)$ with probability p_i

Recall: In RK we had B = I

$$x^{t+1} = x^t - \frac{(A_{i:})^T x^t - b_i}{A_{ii}} e^i$$

RCD was analyzed for $p_i = \frac{A_{ii}}{\mathbf{Tr}(A)}$

RCD: Derivation and Rate

General Method

$$x^{t+1} = x^t - B^{-1}A^T S (S^T A B^{-1} A^T S)^{\dagger} S^T (A x^t - b)$$

Special Choice of Parameters B = A $P(S = e^{i}) = p_{i}$ $S = e^{i}$ $x^{t+1} = x^{t} - \underbrace{(A_{i:})^{T}x^{t} - b_{i}}_{A_{ii}} e^{i}$

Complexity Rate

$$p_{i} = \frac{A_{ii}}{\mathbf{Tr}(A)} \qquad \mathbf{E}\left[\|x^{t} - x^{*}\|_{A}^{2}\right] \le \left(1 - \frac{\lambda_{\min}(A)}{\mathbf{Tr}(A)}\right)^{t} \|x^{0} - x^{*}\|_{A}^{2}$$

RCD: "Standard" Optimization Form

Yurii Nesterov. Efficiency of coordinate descent methods on huge-scale optimization problems. SIAM J. on Optimization, 22(2):341–362, 2012 (CORE Discussion Paper 2010/2)

Nesterov considered the problem:

$$\min_{x\in\mathbb{R}^n}f(x) \xleftarrow{}^{\text{Convex and}}_{\text{smooth}}$$

 $f(x + he^i) \le f(x) + \nabla_i f(x)h + \frac{L_i}{2}h^2$

Nesterov assumed that the following inequality holds for all *x*, *h* and *i*:

Given a current iterate *x*, choosing *h* by minimizing the RHS gives:

Nesterov's RCD method:

$$x^{t+1} = x^t - \frac{1}{L_i} \nabla_i f(x^t) e^{i t}$$

$$f(x) = \frac{1}{2}x^T A x - b^T x \implies$$
$$L_i = A_{ii} \quad \nabla_i f(x) = (A_{i:})^T x - b_i$$

We recover RCD as we have seen it: $x^{t+1} = x^t - \frac{(A_{i:})^T x^t - b_i}{A_{ii}} e^i$

Experiment

Machine: 128 nodes of Hector Supercomputer (4096 cores)

Problem: LASSO, *n* = 1 billion, *d* = 0.5 billion, 3 TB

P.R. and Martin Takáč. **Distributed coordinate descent for learning with big data.** *Journal of Machine Learning Research* 17(75):1-25, 2016 (*arXiv:1310.2059*, 2013)

LASSO: 3TB data + 128 nodes

Experiment

Machine: 128 nodes of Archer Supercomputer

Problem: LASSO, n = 5 million, d = 50 billion, 5 TB (60,000 nnz per row of A)

Olivier Fercoq, Zheng Qu, P.R. and Martin Takáč. **Fast distributed coordinate descent for minimizing non-strongly convex losses.** *In* 2014 IEEE Int. Workshop on Machine Learning for Signal Proc, 2014

Special Case 3: Randomized Newton Method

Randomized Newton (RN)

Z. Qu, PR, M. Takáč and O. Fercoq. Stochastic Dual Newton Ascent for Empirical Risk Minimization. ICML 2016

$$\min_{x \in \mathbb{R}^n} \left[f(x) = \frac{1}{2} x^T A x - b^T x \right]$$

$$x^* = A^{-1} b$$
Assume: Positive definite

RN arises as a special case for parameters *B*, *S* set as follows:

$$B = A \qquad S = I_{:C} \text{ with probability } p_C$$
$$p_C \ge 0 \quad \forall C \subseteq \{1, \dots, n\} \quad \sum_{C \subseteq \{1, \dots, n\}} p_C = 1$$

RCD is special case with $p_C = 0$ whenever $|C| \neq 1$

RN: Derivation

General Method

$$x^{t+1} = x^t - B^{-1}A^T S (S^T A B^{-1} A^T S)^{\dagger} S^T (A x^t - b)$$

Special Choice of Parameters B = A

$$S = I_{:C}$$
 with probability p_C

$$x^{t+1} = x^t - I_{:C} ((I_{:C})^T A I_{:C})^{-1} (I_{:C})^T (A x^t - b)$$

This method minimizes *f* exactly in a random subspace spanned by the coordinates belonging to *C*

Experiment 4

Machine: laptop

Problem: Ridge Regression, *n* = 8124, *d* = 112

Zheng Qu, P.R., Martin Takáč and Olivier Fercoq, **SDNA: Stochastic Dual Newton Ascent for Empirical Risk Minimization.** *ICML*, 2016

Special Case 4: Gaussian Descent

Gaussian Descent

General Method

$$x^{t+1} = x^t - B^{-1}A^T S (S^T A B^{-1} A^T S)^{\dagger} S^T (A x^t - b)$$

Special Choice of Parameters

$$S \sim N(0, \Sigma)$$

$$x^{t+1} = x^t - \frac{S^T (Ax^t - b)}{S^T A B^{-1} A^T S} B^{-1} A^T S$$

Positive definite covariance matrix

Complexity Rate

$$\mathbf{E}\left[\|x^{t} - x^{*}\|_{B}^{2}\right] \le \rho^{t} \|x^{0} - x^{*}\|_{B}^{2}$$

Gaussian Descent: The Rate

Gaussian Descent: Further Reading

Yurii Nesterov and Vladimir Spokoiny. **Random gradient-free minimization of convex functions.** *Foundations of Computational Mathematics* 17(2):527-566, 2017

S. U. Stitch, C. L. Muller and G. Gartner. **Optimization of convex functions with random pursuit.** *SIAM Journal on Optimization* 23(2):1284-1309, 2014

S. U. Stitch. **Convex optimization with random pursuit.** PhD Thesis, ETH Zurich, 2014

EXTRA TOPIC: Stochastic Preconditioning

Stochastic Preconditioning

Definition [R & Takáč, 2017]

Given a family of randomized algorithms for solving some problem, indexed by a set of randomization strategies defining the family, how to choose the best method in the family?

Our context:

How to choose \mathcal{D} and B?

Fixing Probabilities, Choosing Matrices
Formalizing the Problem

Consider family of distributions $\mathcal D$ parameterised as follows:

 $S = S_i \in \mathbb{R}^m \text{ (for } i = 1, 2, \dots, m) \text{ with probability } 1/m$ These vectors can be chosen ! Probabilities are fixed ! For simplicity, assume A is $n \times n$ and positive definite Choose B = ARecall:

Theorem [Gower & R, 2015] For the basic method we have $t \ge \frac{1}{\lambda_{\min}^+} \log\left(\frac{1}{\epsilon}\right) \xrightarrow{\omega = 1} \mathbf{E}\left[\|x^t - x^*\|_B^2\right] \le \epsilon$

We will focus on maximizing this

Problem and Solution

$$W \stackrel{\text{def}}{=} B^{-1/2} A^{\top} \mathbf{E}_{S \sim \mathcal{D}} [H_S] A B^{-1/2}$$

$$\sum_{S_1, \dots, S_m \in \mathbb{R}^m} \lambda_{\min}^+ (W)$$

Theorem [Gower & R, 2015]

The optimal vectors S_1, \ldots, S_m are the eigenvectors of A.

Moreover, $W = \frac{1}{m}I$, and hence $\lambda_i = \frac{1}{m}$ for all *i*

 $\begin{array}{ll} \text{Corollary} & \omega = 1 \\ t \ge m \log \left(\frac{1}{\epsilon}\right) & \blacksquare & \mathbf{E} \left[\|x^t - x^*\|_B^2 \right] \le \epsilon \end{array}$

"Spectral" basic method (complexity independent of condition number)

Comments

- The spectral basic method is impractical in its pure form
 - Need to compute eigenvectors of A!
 - We ignore the fact that choice of *D* influences the cost of 1 iteration
- However, it highlights the potential power of stochastic preconditioning
- In generalizations (to convex/nonconvex opt), it only makes sense to consider a small family of distributions

$$\min_{x \in \mathbb{R}^n} f(x) = \frac{1}{m} \sum_{i=1}^m f_i(x)$$

It is natural to randomize over *i*. This corresponds to the family:

 $S = e_i$ with probability $p_i > 0$

$$x^{t+1} = x^t - \omega \nabla f_i(x^t)$$

Importance Sampling: Fixing Matrices, Choosing Probabilities

Formalizing the Problem

Consider family of distributions $\mathcal D$ parameterised as follows:

Theorem [Gower & R, 2015] For the basic method we have

$$t \ge \frac{1}{\lambda_{\min}^+} \log\left(\frac{1}{\epsilon}\right) \xrightarrow{\omega = 1} \mathbf{E}\left[\|x^t - x^*\|_B^2\right] \le \epsilon$$

Again, we will focus on maximizing this

Problem and Solution

$$W \stackrel{\text{def}}{=} B^{-1/2} A^{\top} \mathbf{E}_{S \sim \mathcal{D}} [H_S] A B^{-1/2} \mathcal{N}$$
$$W \stackrel{\text{max}}{=} D^{-1/2} A^{\top} \mathbf{E}_{S \sim \mathcal{D}} [H_S] A B^{-1/2} \mathcal{N}$$

 $^{\prime}2$

Sometimes we know that $\;\;\lambda_{\min}>0\;$

Then we can reformulate the above as a **semidefinite program**:

$$\max_{\substack{p,t}\\p \in I} t$$
subject to
$$\sum_{i=1}^{r} p_i \left(V_i (V_i^T V_i)^{\dagger} V_i^T \right) \succeq t \cdot I,$$

$$V_i = B^{-1/2} A^T S_i$$

$$p \ge 0, \quad \sum_{i=1}^{r} p_i = 1$$

Leads to different (better) probabilities than "Lipschitz" or "uniform" probabilities known in convex optimization. This is because we have more structure to exploit.

RCD: Optimal Probabilities can Lead to a Remarkable Improvement

RK: Convenient vs Optimal

RCD: Convenient vs Optimal

EXTRA TOPIC: Randomized Matrix Inversion

Robert Mansel Gower (Edinburgh -> Paris)

Robert Mansel Gower and P.R.

Randomized Quasi-Newton Methods are Linearly Convergent Matrix Inversion Algorithms *arXiv:1602.01768*, 2016

The Problem: Invert a Matrix

Assumption 1 Matrix *A* is invertible

Inverting Symmetric Matrices

1. Sketch and Project
$$\|X\|_{F(B)} \coloneqq \sqrt{\operatorname{Tr}(X^{\top}BXB)}$$

 $X^{t+1} = \arg\min_{X \in \mathbb{R}^{n \times n}} \|X - X^t\|_{F(B)}^2$
subject to $S^{\top}AX = S^{\top}, \quad X = X^{\top}$

- Quasi-Newton updates are of this form: *S* = deterministic column vector
- We get randomized block version of quasi-Newton updates!
- Randomized quasi-Newton updates are linearly convergent matrix inversion methods
- Interpretation: Gaussian Inference (Henning, 2015)

Donald Goldfarb. A Family of Variable-Metric Methods Derived by Variational Means. *Mathematics of Computation* 24(109), 1970

Gaussian Inference

Philipp Henning **Probabilistic Interpretation of Linear Solvers** *SIAM Journal on Optimization* 25(1):234-260, 2015

The new iterate X_{k+1} can be interpreted as

- the mean of a posterior distribution
- under a Gaussian prior with mean $\, X_k \,$ and
- noiseless (and random) linear observation of A^{-1}

Randomized QN Updates

B	Equation	Method
Ι	AX = I	Powel-Symmetric-Broyden (PSB)
	$XA^{-1} = I$	Davidon-Fletcher-Powell (DFP)
$\frown A$	AX = I	Broyden-Fletcher-Goldfarb-Shanno (BFGS)

- All these QN methods arise as **special cases of the framework**
- All are **linearly convergent**, with explicit convergence rates
- We also recover non-symmetric updates such as Bad Broyden and Good Broyden
- We get **block versions**
- We get randomized versions of new QN updates

2. Constrain and Approximate

$$\begin{aligned} X^{t+1} &= \arg \min_{X \in \mathbb{R}^{n \times n}} \|X - A^{-1}\|_{F(B)}^2 \\ \text{s.t.} \quad X &= X^t + \Lambda S^\top A B^{-1} + B^{-1} A^\top S \Lambda^\top \\ \Lambda &\in \mathbb{R}^{n \times \tau} \text{ is free} \end{aligned}$$

$$\begin{aligned} \text{New formulation even for standard QN methods} \end{aligned}$$

Randomized BFGS: $B = A, \tau = 1$

$$\begin{split} X^{t+1} &= \arg \min_{\substack{X \in \mathbb{R}^{n \times n} \\ X \in \mathbb{R}^{n} \times n}} \|X - A^{-1}\|_{F(A)}^{2} = \|AX - I\|_{F}^{2} \\ \text{s.t.} \quad X &= X^{t} + \lambda S^{\top} + S\lambda^{\top} \\ \lambda \in \mathbb{R}^{n} \text{ is free} \quad & \text{RBFGS performs "best"} \\ \text{symmetric rank-2 update} \end{split}$$

6. Random Fixed Point

$$X^{t+1} - A^{-1} = (I - B^{-1}A^{\top}HA)(X^t - A^{-1})(I - AHA^{\top}B^{-1})$$

Complexity / Convergence

Summary: Matrix Inversion

- Block version of QN updates
- New points of view (constrain and approximate, ...)
- New link between QN and approx. inverse preconditioning
- First time randomized QN updates are proposed
- First stochastic method for matrix inversion (with complexity bounds)?
- Linear convergence under weak assumptions
- Did not talk about:
 - Nonsymmetric variants
 - Theoretical bounds for discretely distributed S
 - Adaptive randomized BFGS
 - Limited memory and factored implementations
 - Experiments (Newton-Schultz; MinRes)
 - Use in empirical risk minimization [Gower, Goldfarb & R. 2016]
 - Extension: computation of the pseudoinverse [Gower & R. 2016]

Extensions

Matrix Inversion

Ongoing work:

- Distributed, accelerated
- and adaptive variants
- Optimization with linear constraints, ...

Robert M. Gower and P.R.

Randomized Quasi-Newton Methods are Linearly Convergent MatrixInversion AlgorithmsarXiv:1602.01768, 2016Solve AX = I

Machine Learning

Robert M. Gower, Donald Goldfarb and P.R.

Stochastic Block BFGS: Squeezing More Curvature out of Data *ICML*, 2016

Zheng Qu, P.R., Martin Takáč and Olivier Fercoq Stochastic Dual Newton Ascent for Empirical Risk Minimization *ICML*, 2016

The End

(Lehigh)

Jakub Mareček (IBM)

Zheng Qu (Hong Kong)

Olivier Fercoq (Telecom ParisTech)

Rachael Tappenden (Johns Hopkins)

Robert M Gower (Edinburgh)

Virginia Smith (Berkeley)

Jakub Konečný (Edinburgh)

Jie Liu (Lehigh)

Michael Jordan (Berkeley)

Dominik Csba (Edinburgh)

Tong Zhang (Rutgers & Baidu)

Zeyuan Allen-Zhu (Princeton)

Nati Srebro (TTI Chicago)

Donald Goldfarb (Columbia)

Chenxin Ma (Lehigh)

Martin Jaggi (ETH Zurich)