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Outline
1. Supervised	Learning

– Prediction,	loss	functions,	regularizers,	ERM
– Convexity,	strong	convexity	and	smoothness
– ERM	duality,	convex	conjugation
– 4	+	4	problem	classes
– Linear	systems	as	ERM

2. Standard	Algorithmic	Toolbox	in	Optimization
– 8	tools:	GD,	Acceleration,	Proximal	Trick,	Randomized	Decomposition	

(SGD/RCD),	Minibatching,	Variance	Reduction,	Importance	Sampling,	Duality
– Summary	

3. Stochastic	Methods	for	Linear	Systems
– Stochastic	reformulations
– Basic,	parallel	and	accelerated	methods
– Dual	method
– Extra	topics:	special	cases,	stochastic	preconditioning,	stochastic	matrix	

inversion



Part	1
Supervised	Learning



The	Idea



Prediction	of	Object	Labels

NYT	articles Article	category															(finite	set) Multi-class	
classification

E-mails Spam	/	not-spam Binary
classification

Images Image category																(finite	set) Multi-class	
classification

Surveillance	videos Probability	of	a	threat Regression

User	clicks Age											 Regression

A B

(0, 150]

{�1, 1}

[0, 1]

Set	of	“natural”	
objects Set	of	labels

Prediction
task



Statistical	Model	of	Objects	&	Labels

We	assume	that	object-label	pairs	occur	in	nature	according	to	
some	(unknown)	distribution:

Given	a	sampled	object	
predict	the	unknown	label

(ai, bi) ⇠ D

GOAL: ai
bi



Feature	Map:	Vector	Representation	
of	Natural	Objects

�

Vector	representation

#	features

Feature	engineering	(manual	design)
Representation	learning	(automatic	design)

A 7! Rd



Kernel	Trick

�



Predictor

Linear	Predictor

Neural	Network
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Loss	and	Expected	Loss

We	want	the	expected	loss	(“true	risk”)	to	be	small:

Predicted	label True	label

loss(h
x

(a
i

), b
i

)

min
x2Rd

E(ai,bi)⇠D [loss(h
x

(a
i

), b
i

)]



Empirical	Risk	Minimization

Draw	i.i.d.	data	samples	from	the	distribution

Output	predictor	which	minimizes	the	Empirical	Risk:

(a1, b1), (a2, b2), . . . , (an, bn) ⇠ D

min
x2Rd

1

n

nX

i=1

loss(h
x

(a
i

), b
i

) + g(x)

From	now	on,	let:

fi(a>i x)
def
= loss(a>i x, bi)

�(ai) = ai

h

x

(a
i

) = �(a
i

)>x (linear	predictor)

(objects	are	already	represented	as	vectors)

(hiding	the	label)

Monte-Carlo	
integration

(sample	average	
approximation)



Loss	Functions
&	

Regularizers



Regularizers
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Least Squares

Ridge	Regression

LASSO

Non-negative	Least	
Squares	Regression

SVM

Logistic	Regression

Linear System
(Best	

Approximation)

L1	Regression

g(x)

0

Examples	of	ERM	Problems
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Source:	wikipedia

SVM:	Support	Vector	Machine



Typical	Function	Classes

krf(x)�rf(y)k  Lkx� yk
L-smooth

convex

If	twice	
differentiable

µ-strongly
convex

f(↵x+ (1� ↵)y)  ↵f(x) + (1� ↵)f(y)

If	continuously	differentiable:

f(↵x+ (1� ↵)y)  ↵f(x) + (1� ↵)f(y)� µ
2↵(1� ↵)kx� yk2

f(y)  f(x) + hrf(x), y � xi+ L
2 ky � xk2

0 � r2
f(x)

µ · I � r2
f(x)

r2
f(x)  L · I

µkx� yk2  hrf(x)�rf(y), x� yi

If	continuously	differentiable:

0  hrf(x)�rf(y), x� yi

f(x) + hrf(x), y � xi  f(y)

f(x) + hrf(x), y � xi+ µ
2 ky � xk2  f(y)

f : Rd ! R Defining	property



Visualizing	Smoothness	and	
Strong	Convexity

f(x)+hrf(x), y�xi+ µ
2 ky�xk2  f(y)  f(x)+hrf(x), y�xi+ L

2 ky�xk2
µ · I � r2

f(x) � L · I

f

x

y

f(x) + hrf(x), y � xi+ µ
2 ky � xk2

f(x) + hrf(x), y � xi+ L
2 ky � xk2

f(x) + hrf(x), y � xi



Empirical	Risk	
Minimization



Primal	Problem

d	= #	features	
(parameters)

n =	#	samples regularizer

loss	function

min
x2Rd

"
P (x)

def
=

1

n

nX

i=1

f

i

(a>
i

x) + g(x)

#



Convex	Conjugate	
(Legendre-Fenchel

Transform)

• Convex	conjugate	of	a	
function	is	the	
generalization	of	the	
Legendre	transform

• Convex	conjugation	was	
200	years	later	studied	by	
Werner	Fenchel

• It	is	a	key	tool	in	
optimization	duality



Convex	Conjugate

f : Rd ! R [ {+1}
f

⇤(z)
def
= sup

x2Rd

{hz, xi � f(x)}

Theorem

f is µ-strongly convex , f⇤
is

1
µ -smooth

Examples: f(x) = 1
2kxk

2
B ) f

⇤(x) = 1
2kxk

2
B�1

f(x) = 1
C

(x) ) f

⇤(z) = sup
x2C

hz, xi

f is L-smooth , f⇤
is

1
L -strongly convex

convex



Primal	and	Dual	Problems

D(↵) ⌘ ��g⇤
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concave



Duality

Weak	Duality:

Strong	Duality:

Optimal	solutions

(Under	suitable	assumptions)
P (x⇤) = D(y⇤)

x

⇤ = rg

⇤ � 1
nA

>
y

⇤�

P (x) � D(y) (Always)

If	g is	strongly	convex,	we	can	recover	primal	
optimal	solution	from	dual	optimal	solution:



Weak	Duality	&	Optimality	Conditions

� 0� 0 Weak	duality

Optimality	conditions
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fi, g convex

µ > 0 µ = 0
g

fi

L-smooth

not L-smooth

Linear	systems

Ridge	regression

SVM

LASSO

L1-SVM

Least	Squares	RegressionLogistic	regression

L1	regression

4	Interesting	Classes
of	Convex	ERM	Problems

min
x2Rd

"
P (x)

def
=

1

n

nX

i=1

f

i

(a>
i

x) + g(x)

#

max

y2Rn

"
D(y)

def
= � 1

n

nX

i=1

f⇤
i (�yi)� g⇤

✓
1

n
A>y

◆#

log(1 + e�bit
)

1
2 (t� bi)2

µ
2 kxk

2
2

µ
2 kxk

2
2

1
2 (t� bi)2 µkxk1

1
2 (t� bi)2 0

1{bi}(t)
1
2kx� x

0k2B

max{0, 1� bi · t}
µ
2 kxk

2
2 |t� bi| 0

max{0, 1� bi · t} µkxk1



4	Interesting	Classes	of	ERM	Problems	
Based	on	Dimensions

SMALL BIG

SMALL

BIG

n
d

“Big	Data”	Setting

Decompose	n
Primal:	SGD-type
Dual:	RCD-type

“Big	Model”	Setting

Decompose	d
Primal:	RCD-type

Deterministic	
methods	will	do	fine:
GD,	AGD,	Newton,	
quasi-Newton,	…

?



Example:
Solving	Linear	Systems



Solving	Linear	Systems

A 2 Rn⇥d b 2 Rn

Think: n � d

Solve Ax = b

x 2 Rd

A =

0

BBB@

a>1
a>2
...
a>n

1

CCCA





Linear	Systems	(Best	Approximation	
Version)	as	a	Primal	ERM	Problem

min
x2Rd

"
P (x)

def
=

1

n

nX

i=1

f

i

(a>
i

x) + g(x)

#

fi(t) = 1{bi}(t)
def
=

(
0 for t = bi,

+1 otherwise.

g(x) = 1
2kx� x

0k2B



Primal	Problem:	Best	Approximation

Subject to Ax = b

min
x2Rd

1

2
kx� x

0k2
B

x

0

{x : Ax = b}

x

⇤

kxkB =
p
x

>
Bx



Dual	Problem

Unconstrained	(non-strongly)	concave	quadratic	maximization

f⇤
i (t) = bit

g

⇤(x) = hx0
, xi+ 1

2kxk
2
B�1g(x) = 1

2kx� x

0k2B

fi(t) = 1{bi}(t)

max

y2Rn
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0
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�

f
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{hz, xi � f(x)}
Recall	convex	conjugate:



Recovering	Primal	Solution	
from	Dual	Solution

x
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⇤



Further	Reading	on	Randomized	Methods	
for	Linear	Systems

Robert	M.	Gower	and	P.R.
Stochastic	Dual	Ascent	for	Solving	Linear	Systems	
arXiv:1512.06890,	2015

Robert	M.	Gower	and	P.R.
Randomized	Iterative	Methods	for	Linear	Systems
SIAM	J.	on	Matrix	Analysis	and	Applications	36(4),	1660-1690,	2015

Primal	View:

Dual	View:

Robert	M.	Gower	and	P.R.
Randomized	Quasi-Newton	Updates	are	Linearly	Convergent	Matrix	
Inversion	Algorithms
arXiv:1602.01768,	2016

Inverting	Matrices	&	Connection	to	Quasi-Newton	Methods:

Most	Downloaded	SIMAX	Paper



Part	2
Standard	

Algorithmic	Toolbox



Optimization	with	Big	Data	

*	in	a	billion	dimensional	space	on	a	foggy	day

Extreme*	Mountain	Climbing=



God’s	Algorithm	=	Teleportation



Mortals	Have	to	Walk…

x0
x1

x2 x3



Algorithmic	Tools
1. Gradient	descent
2. Handling	non-smoothness	via	the	proximal	trick
3. Acceleration
4. Randomized	decomposition
5. Parallelism	/	mini-batching

All	these	tools	
can	be	

combined!

More	tools:	
• Variance	reduction
• Importance	sampling
• Asynchrony
• Curvature
• Line	search



Brief,	Biased	and	Severely	Incomplete	
History	of	Big	Data	Optimization

“Nonsmoothmin	can	
be	as	easy	as	smooth	

minimization”	
(Nesterov)

‘04

Accelerated
gradient	descent

(Nesterov)

1983

“Randomization helps!”
(Strohmer &	Vershynin,	

Leventhal &	Lewis,	Shalev-
Shwartz &	Tewari,	Nesterov,	

R.	&	Takáč)

‘09-’11 ‘13

“Acceleration,	parallelism,	
nonsmoothness &	

randomization	combined”
(Fercoq &	R.)

‘12

“Duality &	randomization	combined”
(Shalev-Shwartz &	Zhang)

“Parallelism,	randomization	&	
nonsmoothness combined”

(R.	&	Takáč)

1984

Age	of	
Interior-point	
methods

New	tricks:
Variance	reduciton,	
Importance	sampling,	
Asynchrony,	Distributed	
computation,	Federated	

Optimization,		Nonconvexity,	
return	of	2nd order	methods

1847

Gradient	
descent
(Cauchy)



Tool	1

Gradient	Descent	(1847)
“Just	follow	a	ball	rolling	

down	the	hill”



http://madeincalifornia.blogspot.co.uk/2012/11/gradient-descent-algorithm.html

Augustin Cauchy
Méthode générale pour	la	résolution des	systèmes d'équations
simultanées,	pp.	536–538,	1847



min
x2Rd

"
P (x)

def
=

1

n

nX

i=1

f

i

(a>
i

x) + g(x)

#
The	Problem

L-smooth, µ-strongly convex

min
x2Rd

f(x)

f(x) + hrf(x), y � xi+ µ
2 ky � xk2  f(y)  f(x) + hrf(x), y � xi+ L

2 ky � xk2



Gradient	Descent	(GD)

#	iterations condition	
number	of	f

t � L

µ

log

⇣
f(x0)�f(x⇤)

✏

⌘

f(xt)� f(x⇤)  ✏

x

t+1 = x

t � 1
Lrf(xt)



Tool	2

Acceleration	(1983/2003)
“Gradient	descent	can	be

made	much	faster!”



Gradient	Step

Extrapolation	Step

y

t+1 = x

t � 1
Lrf(xt)

x

t+1 = (1 + ↵)yt+1 � ↵y

t

x

t yt

yt+1

x

t+1



Accelerated	Gradient	Descent	(AGD)

#	iterations
Square	root	of	
the	condition	
number	of	f

↵ =

p
L/µ� 1p
L/µ+ 1Gradient	step:

Extrapolation:

y

t+1 = x

t � 1
Lrf(xt)

x

t+1 = (1 + ↵)yt+1 � ↵y

t

t �
q

L
µ log

�
C
✏

�

f(xt)� f(x⇤)  ✏



Acceleration	Works	
(Somewhat	Mysteriously)

GD

#	gradient	evaluations

1								10									20									30									40								50

10�1

10�2

10�3

10�4

10�5

10�6

10�7

10�8

10�9

10�10

AGD

er
ro
r

L
µ log(1/✏)

q
L
µ log(1/✏)



Acceleration	and	ODEs

Weijie Su,	Stephen	Boyd	and	Emmanuel	J.	Candes
A	Differential	Equation	for	Modeling	Nesterov’s Accelerated	
Gradient	Method:	Theory	and	Insights
NIPS,	2014

Ẍ(t) + 3
t Ẋ(t) +rf(X(t)) = 0

Ẋ(t) +rf(X(t)) = 0

ODE	for	Gradient	Descent

ODE	for	Accelerated	Gradient	Descent



Acceleration
• Reignited	interest	in	gradient	methods
• Called	momentum in	deep	neural	networks	literature
• Oscillation can	be	tamed	(e.g.,	by	restarting)
• Approaches:

– Early	work	[Nesterov,	1983,	2003,	2005]
– ODEs	[Su-Boyd-Candes,	2014]
– Geometry/ellipsoid	method	[Bubeck-Lee-Singh,	2014]
– Linear	coupling	[AllenZhu-Orecchia,	2014]
– Katalyst [Mairal-Zarchaoui,	2015]
– Optimal	averaging	[Scieur-D’Aspremont-Bach,	2016]

Yurii Nesterov
A	Method	for	Unconstrained	Convex	Minimization	Problem	with	
the	Rate	of	Convergence	O(1	/	k^2)	
Soviet	Math.	Doklady 269,	543-547,	1983

Yurii Nesterov
Introductory	Lectures	on	Convex	Optimization:	a	Basic	Course
Kluwer,	Boston,	2003

Weakly	convex	case

Strongly	convex	case



Tool	3

Proximal	Trick	(2004)
“Some	nonsmooth

problems are	as	easy	
as	smooth	problems”



The	Problem

Convex,	
but	can	be	
nonsmooth

min
x2Rd f(x) + g(x)

L-smooth, convex



Truss	Topology	Design

P.R.	and	Martin	Takáč.	Efficient	Serial	and	Parallel	Coordinate	Descent	
Methods	for	Huge-Scale	Truss	Topology	Design.	Operations	Research	
Proceedings,	pp 27-32,	2012



min
x2Rd

1

2
kAx� bk22 + �kxk1

Truss	Topology	Design:	
“LASSO”	Problem

Least-squares
(convex,	smooth,	

quadratic)

L1	norm
(convex,	nonsmooth,

but	“simple”)

0

#	potential	bars
(quadratic	in	
mesh	size)

Encodes	all	
potential	bars



Image	Deblurring

Jakub Konečný,	Jie Liu,	P.R.,	Martin	Takáč.	Mini-Batch	Semi-Stochastic	
Gradient	Descent	in	the	Proximal	Setting.	IEEE	Journal	of	Selected	
Topics	in	Signal	Processing	10(2),	242-255,	2016

Amir	Beck	and	Marc	Teboulle.	A	Fast	Iterative	Shrinking-Thresholding
Algorithm	for	Linear	Inverse	Problems.	SIAM	J.	Imaging	Sciences		2(1),	
183-202,	2009



Image	Deblurring:	“LASSO”	
Problem

Blurring	matrix	
multiplied	by	a	

wavelet	basis	matrix

0

#	pixels	in	
the	image Encourages	sparsity

in	the	wavelet	basis

blurred	image

image

min
x2Rd

1

2
kAx� bk22 + �kxk1



Image	Segmentation

Alina Ene and	Huy L.	Nguyen.	Random	Coordinate	Descent	Methods	
for	Minimizing	Decomposable	Submodular Functions.	ICML 2015

Olivier	Fercoq and	P.R.	Accelerated,	Parallel	and	Proximal	Coordinate	
Descent.	SIAM	Journal	on	Optimization	25(4),	1997-2023,	2015



minimize

1

2

�����

dX

i=1

xi

�����

2

subject to xi 2 Pi, i = 1, 2, . . . , d

Image	Segmentation:	(Reformulated)	
Submodular	Optimization

#	polytope grows	with	the	
image	size

Smooth,	convex,	
quadratic



Image	Segmentation:	(Reformulated)	
Submodular	Optimization

minimize

1

2

�����

dX

i=1

xi

�����

2

subject to xi 2 Pi, i = 1, 2, . . . , d

min
x2Rd f(x) + g(x)?

g(x) = 1P1\P2\···\Pd(x) =

dX

i=1

1Pi(x) =

(
0 x 2 P1 \ P2 \ · · · \ Pd,

+1 otherwise.

f(x) =
1

2

�����

dX

i=1

xi

�����

2



Proximal	Gradient	Descent	(PGD)
STEP	1:	Pretend	there	is	no	regularizer

STEP	2:	Take	a	“proximal”	step	with	respect	to	g

• Gradient	Descent	is	a	special	case	for	g =	0
• Even	though	this	is	a	nonsmooth problem,												

#	steps	is	the	same	as	for	Gradient	Descent!
• Efficient	if	Step	2	is	easy	to	do

L
µ log(1/✏)

z

t+1 = x

t � 1
Lrf(xt)

x

t+1 = arg min
x2Rd

1

2
kx� z

t+1k22 +
1

L

g(x)



Example:	Projected	Gradient	Descent

Convex	set

STEP	2

STEP	1

Q

min
x2Q

f(x) , min
x

f(x) + g(x)

g(x) = 1Q(x)
def
=

(
0 x 2 Q

+1 x /2 Q

z

t+1 = x

t � 1
Lrf(xt)

x

t+1 = arg min
x2Rd

1

2
kx� z

t+1k22 +
1

L

g(x)

x

t

zt+1

x

t+1



Tool	4

Randomized	
Decomposition

“Doing	many	simple	decisions	
is	better	than	

doing	a	few	smart	ones”



Why	Randomize?

“It’s	better	to	perform	steps	
using	partial	(random)	data	
than	using	all	data”

Data	Access Analysis Convergence Applications



Decomposition	Principles

min
x2Q

f(x)

Decompose f
Decompose Q

additive: Q = Rd =
Ls

i=1 Qi

multiplicative: Q =
Ts

i=1 Qi

additive: f =
P

i fi

Example:	
Stochastic	Gradient	Descent

Example:	
Randomized	Coordinate	Descent

Example:	
Stochastic	Projection	Method



Primal	ERM	Problem:
Stochastic	Gradient	

Descent

H.	Robbins	and	S.	Monro
A	Stochastic	Approximation	Method
Annals	of	Mathematical	Statistics	22,	pp.	400–407,	1951



The	Problem
n is	big

min
x2Rd

(
f(x) =

1

n

nX

i=1

f

i

(x)

)

min
x2Rd

"
P (x)

def
=

1

n

nX

i=1

f

i

(a>
i

x) + g(x)

#



Stochastic	Gradient	Descent	(SGD)

i =	chosen	uniformly	
at	random

stepsize

1	iteration	of	SGD	is	n	times	cheaper	than	1	iteration	of	GD	!

Unbiased	estimate	of	the	gradient

x

t+1 = x

t � h

trfi(xt)

E[rfi(x)] = rf(x)

min
x2Rd

(
f(x) =

1

n

nX

i=1

f

i

(x)

)



Stochastic	Gradient	Descent	
vs Gradient	Descent

SGD

GD
10�1

10�2

10�3

#	gradient	evaluations

1								10									20									30									40								50

er
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r



Dual	ERM	Problem:
Randomized	Coordinate	Descent

P.R.	and	Martin	Takáč
Iteration	Complexity	of	Randomized	Block	Coordinate	Descent	
Methods	for	Minimizing	a	Composite	Function
Mathematical	Programming	144(2),	1-38, 2014

INFORMS	Computing	Society	Best	Student	Paper	Prize	(runner	up),	2012

(arXiv:1107.2848)

Yurii Nesterov
Efficiency	of	Coordinate	Descent	Methods	on	Huge-Scale	
Optimization	Problems
SIAM	Journal	on	Optimization,	22(2),	341–362,	2012



How	to	Handle	Big	Dimensions?

max

y2Rn

"
D(y)

def
= � 1

n

nX

i=1

f⇤
i (�yi)� g⇤

✓
1

n
A>y

◆#
min
x2Rd

"
P (x)

def
=

1

n

nX

i=1

f

i

(a>
i

x) + g(x)

#
Primal	ERM: Dual	ERM:

What	if	d is	big? What	if	n is	big?

Solution:
Decompose	the	dimension!



The	Problem

n	is	BIG

min
x2Rn

f(x)

L-smooth, µ-strongly convex



Randomized	Coordinate	Descent	in	2D

a2 = b2

N

S

EW



Randomized	Coordinate	Descent	in	2D

a2 = b2
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Randomized	Coordinate	Descent	in	2D

a2 = b2

1

N

S
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Randomized	Coordinate	Descent	in	2D

a2 = b2
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Randomized	Coordinate	Descent	in	2D

a2 = b2
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Randomized	Coordinate	Descent	in	2D

a2 = b2

1
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Randomized	Coordinate	Descent	in	2D

a2 = b2
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Randomized	Coordinate	Descent	in	2D

a2 = b2

1

2
3

4
5

N

S

EW

6
7



Randomized	Coordinate	Descent

Partial	derivative	of	f ith standard unit

basis vector in Rn

Often,	each	iteration	is	n	times	cheaper.
However,	complexity	is	not	n times	worse!

So,	RCD	is	better	than	GD!

x

t+1 = x

t � 1

Li
rif(x

t)ei

t �
⇣

maxi Li
µ

⌘
log

�
C
✏

�
E[f(xt)� f(x⇤)]  ✏

|rif(x+ tei)�rif(x)|  Li|t|
f is Li-smooth along ei:



SGD vs GD	vs RCD

SGD
GD

#	gradient	evaluations

1								10									20									30									40								50

10�1

10�2

10�3

10�4

10�5

10�6

10�7

10�8

10�9

10�10

RCD



LASSO:	1	Billion	Rows	&	100	Million	Variables
source:	[R.	&	Takáč,	arXiv 2011,	MAPR	2014]

errort/n



Tool	5

Parallelism	/	Minibatching
“Work	on	random	subsets”



The	Problem

n	is	BIG

min
x2Rn

f(x)

L-smooth, µ-strongly convex



Parallel	Randomized	
Coordinate	Descent

P.R.	and	Martin	Takáč
Parallel	Coordinate	Descent	Methods	for	Big	Data	Optimization
Mathematical	Programming	156(1),	433-484, 2016

16th IMA	Leslie	Fox	Prize	(2nd),	2013
Most	downloaded	MAPR	paper



Additive	Strategy

1a

1b

0

F (0, 0) = 1

F (1, 1) = 1

F = 0

x = (x1, x2) 2 R2
, f(x1, x2) = (x1 + x2 � 1)2



Additive	Strategy

1

1a

1b

0

F (0, 0) = 1

F (1, 1) = 1

F = 0

x = (x1, x2) 2 R2
, f(x1, x2) = (x1 + x2 � 1)2



Additive	Strategy

1

2a

2b

F (0, 0) = 1

F (1, 1) = 1

F = 0

x = (x1, x2) 2 R2
, f(x1, x2) = (x1 + x2 � 1)2



Additive	Strategy

1

2a

2b

2

F (0, 0) = 1

F (1, 1) = 1

F = 0

x = (x1, x2) 2 R2
, f(x1, x2) = (x1 + x2 � 1)2



Additive	Strategy

2

f(x1, x2) = 0
F (0, 0) = 1

F (1, 1) = 1

x = (x1, x2) 2 R2
, f(x1, x2) = (x1 + x2 � 1)2



1

1a

1b

0

Averaging	Strategy
x = (x1, x2) 2 R2

, f(x1, x2) = (x1 + x2 � 1)2



Averaging	Can	Be	Bad,	Too!

1a

1b

0

1
2a

2b

2

x = (x1, x2) 2 R2
, f(x1, x2) = (x1 � 1)2 + (x2 � 1)2



Actually,	Averaging	Can	Be	Very	Bad!

WANT

BAD!!!

f(x) = (x1 � 1)2 + (x2 � 1)2 + · · ·+ (xn � 1)2

x

0 = 0 2 Rn ) f(x0) = n

f(xt) = n

✓
1� 1

n

◆2t

t � n

2

log

⇣n
✏

⌘



How	to	Combine	the	Updates?

• We	should	do	data-
dependent	combination	
of	the	results	obtained	
in	parallel

• There	is	rich	theory	for	
this	now

Dense	data Sparse	data

Averaging	
(no	speedup)

Adding
(perfect	speedup)

Zheng Qu and	P.R.
Coordinate	Descent	with	Arbitrary	Sampling	II:	Expected	Separable	
Overapproximation
Optimization	Methods	and	Software	31(5),	858-884,	2016



Performance

SGD
GD

#	gradient	evaluations

1								10									20									30									40								50

10�1

10�2

10�3

10�4

10�5

10�6

10�7

10�8

10�9

10�10

RCD	1	core

RCD	2RCD	4
Better	speedup	
for	sparser	data!
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ro
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Problem	with	1	Billion	Variables
source:	[R.	&	Takáč,	arXiv 2011,	MAPR	2014]

Error f(x

t
)� f(x

⇤
)

(t · ⌧)/n



Tools	1-5

Summary



Tools	1-5	Summary

Method # iterations Cost of 1 iter.

Gradient Descent

(GD)

L
µ log(1/✏) n

Accelerated Gradient Descent

(AGD)

q
L
µ log(1/✏) n

Proximal Gradient Descent

(PGD)

L
µ log(1/✏) n + Prox Step

Stochastic Gradient Descent

(SGD)

⇣
maxi Li

µ +

�2

µ2✏

⌘
log(1/✏) 1

Randomized Coordinate Descent

(RCD)

maxi Li
µ log(1/✏) 1

Suffers	from	high	variance	
of	stochastic	gradient



Tool	6

Variance	Reduction
“SGD	is	too	noisy,	fix	it!”



Variance	Reduction
Decreasing	
stepsizes

Mini-
batching

Adjusting	the	
direction

Importance	
sampling

How	does	it	
work?

Scaling	down	
the	noise

More	samples,	
less	variance

Duality (SDCA)	
or	Control	

Variate	(SVRG)

Sample	more	
important	data	
(or	parameters)	
more	often

CONS:
Slow	down;
Hard to	tune	
the	stepsize

More	work	per	
iteration

A	bit	(SVRG)	or	
a	lot	(SDCA)	
more	memory	

needed

Might	overfit
probabilities	to	

outliers

PROS: Still	converges
Widely	known Parallelizable

Improved	
dependence on	

epsilon

Improved	
condition
number	for	

“variable”	data

Good	news: All	tricks	can	be	combined!



Tool	7

Importance	Sampling
“Sample	important	data	

more	often”



The	Problem

min
x2Rn

f(x)

Smooth and µ-strongly convex



${\color{blue}p_i =	\mathbf{P}(i\in	S_t)}$	

For i 2 St do

Choose a random set St of coordinates

x

t+1
i  x

t
i

For i /2 St do

x

t+1
i  x

t
i �

1

vi
(rf(xt))>ei

ARBITRARY	SAMPLING:
i.i.d.	subset	of	{1,	2,…,	n}	with	

arbitrary	distribution

e1 =

0

@
1
0
0

1

A e2 =

0

@
0
1
0

1

A

n = 3Example

P.R.	and	Martin	Takáč
On	optimal	probabilities	in	stochastic	coordinate	descent	methods
Optimization	Letters	10(6),	1233-1243,	2016	(arXiv:1310.3438)



Key	Assumption

Parameters v1, . . . , vn satisfy:

Inequality	must	hold	for	all

E

2

4
f

0

@
x+

X

i2Ŝ

hiei

1

A

3

5  f(x) +
nX

i=1

pirif(x)hi +
nX

i=1

pivih
2
i

x, h 2 Rn pi = P(i 2 St)

i 2 St



Complexity	Theorem

P
�
f(xt)� f(x⇤)  ✏

�
� 1� ⇢

strong	convexity	constant	
pi = P(i 2 St)

t �
✓
max

i

vi

piµ

◆
log

✓
f(x

0
)� f(x

⇤
)

✏⇢

◆



Uniform	vs Optimal	Sampling

pi =
1

n

pi =
viP
i vi

max

i

vi
piµ

=

nmaxi vi
µ

max

i

vi
piµ

=

P
i vi
µ
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Prox-SDCA
Quartz-U (10θ)
Iprox-SDCA
Quartz-IP (10θ)

Data = cov1, n = 522, 911, � = 10�6

Logistic	
Regression:	
Laptop

Uniform	
sampling

Optimal	
sampling

du
al
ity
	g
ap

#	passes	through	data

Zheng Qu,	P.R.	and	Tong	Zhang.	Quartz:	Randomized	Dual	
Coordinate	Ascent	with	Arbitrary	Sampling. In Advances	in	
Neural	Information	Processing	Systems 28, 2015



More	Work	on	Arbitrary	Sampling

Zheng Qu and	P.R.
Coordinate	descent	with	arbitrary	sampling	I:	algorithms	and	
complexity
Optimization	Methods	and	Software	31(5),	829-857,	2016

Zheng Qu and	P.R.
Coordinate	descent	with	arbitrary	sampling	II:	expected	separable	
overapproximation
Optimization	Methods	and	Software	31(5),	858-884,	2016

Zheng Qu,	P.R.	and	Tong	Zhang
Quartz:	Randomized	dual	coordinate	ascent	with	arbitrary	sampling
In Advances	in	Neural	Information	Processing	Systems	28,	2015



Tool	8

Duality
“Solve	the	dual	instead”



3-in1:	Three	Variance	Reduction	
Strategies	in	1	Method



The	Problem

min
x2Rd

"
P (x)

def
=

1

n

nX

i=1

f

i

(a>
i

x) + g(x)

#

µ
2 kxk

2
2Convex and L-smooth

We	will	discuss	duality	without	actually	considering	the	dual	problem.	The
basic	proof	technique	(due	to	Shai	Shalev-Shwartz,	2015)	is	dual-free.



Motivation	I

x

⇤
is optimal

0 = rP (x⇤) =

 
1

n

nX

i=1

airfi(a
>
i x

⇤)

!
+ µx

⇤

x

⇤ =
1

µn

nX

i=1

aiy
⇤
i

y

⇤
i := �rfi(a

>
i x

⇤)

min
x2Rd

"
P (x)

def
=

1

n

nX

i=1

f

i

(a>
i

x) + g(x)

#



Motivation	II

Algorithmic	Ideas:

Maintain the relationship

1

2

3

Try to do “something like”

Does	not	quite	work:
too	“greedy”

Simultaneously search for both x

⇤
and y

⇤
1 , . . . , y

⇤
n

y

t+1
i  �rfi(a>i xt)

x

t =
1

µn

nX

i=1

aiy
t
i



The	Algorithm:	dfSDCA

STEP	2:	PRIMAL	UPDATE

STEP	1:	“DUAL”	UPDATE

For i 2 St do

Choose a random set St of “dual variables”

This	is	just	maintaining	the	relationship	

Initialize	the	
relationship	

pi = P(i 2 St)

STEP	0:	INITIALIZE

Controlling	“greed”	by	taking	
a	convex	combination

Choose y01 , . . . , y
0
n 2 R x

0 =
1

µn

nX

i=1

aiy
0
i

y

t+1
i  

✓
1� ✓

pi

◆
y

t
i +

✓

pi

�
�rfi(a>i xt)

�

x

t+1  x

t +
X

i2St

✓

nµpi
ai

�
�rfi(a>i xt) + y

t
i

�

✓ = min
i

pin

vi+ n



Complexity	

Theorem [Csiba &	R	‘15]

pi = P(i 2 St)

E
⇥
P (xt)� P (x⇤)

⇤
 ✏

t � max

i

✓
1

pi
+

vi

pin

◆
log

✓
C

✏

◆

“ESO	constants”:	
similar	definition	as	

for	NSync



Relevant	Papers

Zheng Qu and	P.R.
Coordinate	descent	with	arbitrary	sampling	II:	expected	separable	
overapproximation
Optimization	Methods	and	Software	31(5),	858-884,	2016

Dominik	Csiba and	P.R.
Primal	method	for	ERM	with	flexible	mini-batching	schemes	and	
non-convex	losses
arXiv:1506.02227,	2015

Shai	Shalev-Shwartz
SDCA	without	duality
arXiv:1502.06177,	2015

Dual-free SDCA idea

dfSDCA

Same theoretical result, but for 
general g and using duality



Standard	Tools:	
Final	Remarks



GD
1847

AGD
‘83	‘03

PGD
‘05

SGD
‘51

RCD
‘10

PCDM
‘12

SDCA
‘12

SVRG	
‘14

1.Gradient	
Descent

YES YES YES YES YES YES YES YES

2.	Acceleration NO YES NO NO NO NO NO NO

3.	Proximal	
Trick

NO NO YES NO NO NO* YES NO

4.	Randomized	
Decomposition

NO NO NO YES YES YES YES YES

5.	Parallelism		
(Minibatching)

YES YES YES* NO NO YES NO NO

6.	Variance	
Reduction

NO YES YES YES YES

7.	Duality NO NO YES YES NO NO YES NO

8.	Importance
Sampling

NO YES NO NO NO

9.	Curvature NO NO NO NO NO NO NO NO

Methods
Tools

PCDM	‘12
APPROX	’13
ALPHA	‘14

PGM	‘05

PCDM	‘12

PCDM	‘12RCDC	‘11	
APPROX	‘13

SAG	’11	SVRG	’13
S2GD	’13	SDCA	’12

Katyusha	‘17

NSync ’13	RCDC	‘11	
ALPHA	’14

APPROX	‘13	
ALPHA	‘14

RCDC	‘11

ProxSVRG ‘14

QUARTZ	‘15

QUARTZ	‘15

AccProx-SDCA	‘13
APCG	‘14

mS2GD	‘14

SDNA	‘15SDNA	‘15 SDNA	‘15

ALPHA	‘14Iprox-SMD	‘13

mSGD ‘13

SBFGS	‘15



NSync
‘13

dfSDCA
‘15

1.Gradient	
Descent

YES YES

2.	Acceleration NO NO

3.	Proximal	
Trick

NO NO

4.	Randomized	
Decomposition

YES YES

5.	Parallelism		
(Minibatching)

YES YES

6.	Variance	
Reduction

YES YES

7.	Duality NO NO*

8.	Importance
Sampling

YES YES

9.	Curvature NO NO

Methods
Tools

QUARTZ	‘15

QUARTZ	‘15



SVRG

S2GD

QUARTZ

mSGD

ALPHA

NSync

SPDC

ProxSVRG

SAG



CoCoA+

ProxSVRG

SDCA

APPROX

PCDM

RCDC

Katyusha

Iprox-SMD



RCD

AGD

GD,	AGD

PGD

SBFGS

APCG

Acc Prox-SDCA

mS2GD



Part	3
Stochastic	Methods	for	

Linear	Systems



The	Plan



Plan
• Quick	recall	of	ERM	formulation	of	linear	systems
• Four	stochastic	reformulations	(not	related	to	ERM)
• Basic	method	(solves	primal	ERM)
• Parallel and	accelerated	methods	(solve	primal	ERM)
• Duality (method	for	solving	dual	ERM)
• EXTRA	TOPIC:	Special	cases	(specializing	some	parameters	of	the	method)
• EXTRA	TOPIC:	Stochastic	preconditioning	(vast	generalization	of	

importance	sampling)
• EXTRA	TOPIC:	Stochastic	matrix	inversion

P.R.	and	Martin	Takáč
Stochastic	Reformulations	of	Linear	Systems:	Algorithms	and	
Convergence	Theory	
arXiv:1706.01108, 2017

We	will	(mostly)	follow	this	paper



Algorithms
Basic	Method
• Stochastic gradient	descent
• Stochastic Newton	method
• Stochastic proximal	point	method
• Stochastic preconditioning	method
• Stochastic fixed	point	method
• Stochastic projection	method

Parallel	Methods Accelerated	Methods

Dual	of	the	Basic	Method
• Stochastic dual	subspace	ascent

Selected	Special	Cases	(Basic	Method)
• Randomized Kaczmarz Method
• Stochastic coordinate	descent
• Randomized Newton	method
• Stochastic Gaussian	descent
• Stochastic	spectral	descent



Quick	Recall:
Linear	Systems	as	ERM



Solving	Linear	Systems

A 2 Rn⇥d b 2 Rn

Think: n � d

Solve Ax = b

x 2 Rd

A =

0

BBB@

a>1
a>2
...
a>n

1

CCCA



Linear	Systems	(Best	Approximation	
Version)	as	a	Primal	ERM	Problem

min
x2Rd

"
P (x)

def
=

1

n

nX

i=1

f

i

(a>
i

x) + g(x)

#

fi(t) = 1{bi}(t)
def
=

(
0 for t = bi,

+1 otherwise.

g(x) = 1
2kx� x

0k2B



Primal	Problem:	Best	Approximation

Subject to Ax = b

min
x2Rd

1

2
kx� x

0k2
B

x

0

{x : Ax = b}

x

⇤

kxkB =
p
x

>
Bx



Dual	Problem

Unconstrained	(non-strongly)	concave	quadratic	maximization

f⇤
i (t) = bit

g

⇤(x) = hx0
, xi+ 1

2kxk
2
B�1g(x) = 1

2kx� x

0k2B

fi(t) = 1{bi}(t)

max

y2Rn


D(y)

def
=

⌦
b�Ax

0
,

y
n

↵
� 1

2

���A> y

n

���
2

B�1

�

f

⇤(z)
def
= sup

x2Rd

{hz, xi � f(x)}
Recall	convex	conjugate:



Recovering	Primal	Solution	
from	Dual	Solution

x

⇤ = rg

⇤ � 1
nA

>
y

⇤�Recall:

g

⇤(x) = hx0
, xi+ 1

2kxk
2
B�1

rg

⇤(x) = x

0 +B

�1
x

x

⇤ = x

0 + 1
nB

�1
A

>
y

⇤



Reformulation	1:
Stochastic	Optimization



Change	of	Notation

Ax = b

n

d



A	System	of	Linear	Equations

Ax = b

m

n A 2 Rm⇥n
, x 2 Rn

, b 2 Rm

m equations with n unknowns

Assumption:	The	system	is	consistent	(i.e.,	a	solution	exists)



Stochastic	Reformulations	
of	Linear	Systems

Ax = b

1. Stochastic	Optimization
2. Stochastic	Linear	System
3. Stochastic	Fixed	Point
4. Probabilistic	Intersection

Theorem
a) These	4	problems	have	the	same	solution	sets
b) Weak	necessary	&	sufficient	conditions	for	the	solution	set	

to	be	equal	to	{x : Ax = b}

B,D

n⇥ n pos def

distribution over m⇥ q matrices

B = identity
D = uniform over e1, . . . , em (unit basis vectors in Rm

)

Example:



Reformulation	1:
Stochastic	Optimization



Stochastic	Optimization

Minimize f(x)
def
= ES⇠D[fS(x)]

LS = {x : S

>
Ax = S

>
b}

Stochastic	function
(unbiased	estimator	of	function	f)

Sketched	system

fS(x) =
1
2kx�⇧B

LS
(x)k2B = 1

2 (Ax� b)>HS(Ax� b)

HS
def
= S(S>AB�1A>S)†S>



Special	Case

Minimize f(x) :=
1

m

mX

i=1

1

kA:ik2
(A:ix� b

i

)2

| {z }
fi(x)

m = 3 ) e1 =

0

@
1
0
0

1

A , e2 =

0

@
0
1
0

1

A , e3 =

0

@
0
0
1

1

A

Expectation	becomes	average	over	m functions:

S = ei with probability 1/mD is defined by:
B = I (identity	matrix)



Special	Case:	Randomized	Algorithm

Algorithm	(Stochastic	Gradient	Descent)

x

⇤

x

0

E[rfi(x)] = rf(x)

Stochastic	gradient	(unbiased	
estimator	of	the	gradient):

1. Choose random i 2 {1, 2, . . . ,m}

2. x

t+1
= x

t �rfi(x
t
)



Reformulation	2:
Stochastic	Linear	System



Stochastic	Linear	System

Preconditioner	P

Instead	of	
Ax = b

the	preconditioned	system:

we	solve	

Preconditioner	P

HS
def
= S(S>AB�1A>S)†S>

Solve B�1A>ES⇠D[HS ]Ax = B�1A>ES⇠D[HS ]b



Special	Case

Solve PAx = Pb

P :=
1

m

mX

i=1

A> eie>i
kAi:k2| {z }
Pi

S = ei with probability 1/mD is defined by:
B = I (identity	matrix)



Special	Case:	Algorithm

1. Choose random i 2 {1, 2, . . . ,m}
2. x

t+1
= argmin

x2Rn {kx� x

tk : P

i

Ax = P

i

b}

Algorithm	(Stochastic	Preconditioning	Method)

E[Pi] = P

Stochastic	preconditioner	(unbiased	
estimator	of	the	preconditioner	P)See	also:	Sketch	&	Project	Method	

[Gower	&	Richtarik,	2015]



Reformulation	3:
Stochastic	Fixed	Point	

Problem



Stochastic	Fixed	Point	Problem

Projection in B-norm onto LS = {x : S

>
Ax = S

>
b}

Solve x = E
S⇠D

⇥
⇧

B

LS
(x)

⇤
| {z }

�(x)



Special	Case

S = ei with probability 1/mD is defined by:
B = I (identity	matrix)

Solve x = �(x)

�(x) := x� P (Ax� b) =
1

m

mX

i=1

x� P

i

(Ax� b)| {z }
�i(x)



Algorithm	(Stochastic	Fixed	Point	Method)

Special	Case:	Algorithm

Stochastic	operator	(unbiased	estimator	of	
the	fixed	point	operator)

1. Choose random i 2 {1, 2, . . . ,m}

2. x

t+1
= �i(x

t
)

E[�i(x)] = �(x)



Reformulation	4:
Stochastic	Intersection	

Problem



Stochastic	Intersection	of	Sets

Definition

\

S⇠D
LS

def
= {x : P(x 2 LS) = 1}

Stochastic	intersection	of	the	sets																										is	the	set	{LS}S⇠D

LS = {x : S

>
Ax = S

>
b}

“Sketched” system:

Stochastic	set:

S

>
Ax = S

>
b

S ⇠ D



Discrete	Case:	Stochastic	Intersection	=	
Classical	Intersection

S = Si with probability pi > 0

D is discrete:

{x : P(x 2 LS) = 1} =
\

i

LSi

Stochastic	intersection
of	sets

“Classical”	intersection
of	sets



Indicator	Function	of	a	Set

1M(x) =

(
0 x 2 M
+1 otherwise.

Indicator	function	of	the	stochastic	set:

1LS (x) =

(
0 x 2 LS

+1 otherwise.



Lemma

Stochastic	Intersection

ES⇠D [1LS (x)] =

(
0 P(x 2 LS) = 1

+1 otherwise.

That	is,	the	expectation	of	the	indicator	functions	of	the	
stochastic	sets	is	an	indicator	function	of	the	stochastic	

intersection	those	sets:

1LS (x) =

(
0 x 2 LS

+1 otherwise.

ES⇠D [1LS (x)] = 1T
S⇠D LS

(x)



Lemma

Stochastic	Intersection	Problem

LS = {x : S

>
Ax = S

>
b}

Stochastic	set:

Under some weak assumptions (e.g., E[HS ] � 0 is su�cient)

L =
T

S⇠D LS

Solution	set	of	the	linear	system:	

L def
= {x : Ax = b}

Find x 2
T

S⇠D LS



Special	Case

Find x 2
Tm

i=1 Li

m = 3

n = 3

S = ei with probability 1/mD is defined by:
B = I (identity	matrix)

Li
def
= {x : a

>
i x = bi}



Special	Case:	Algorithm

x

0

x

1

x

2

x

3

x

4

x

5
L1

L2

L3

1. Choose random i 2 {1, 2, . . . ,m}
2. x

t+1
= ⇧Li(x

t
)

Algorithm	(Stochastic	Projection	Method)

(Stochastic	set)
Projection onto Li

T.	Strohmer and	R.	Vershynin.	A	Randomized	Kaczmarz Algorithm	with	Exponential	
Convergence.	Journal	of	Fourier	Analysis	and	Applications 15(2),	pp.	262–278,	2009

Randomized	Kaczmarz method	(2009)



Summary



Deterministic concept Decomposition Stochastic	estimate

Function f f(x) =
1

m

mX

i=1

fi(x)

Gradient rf(x) rf(x) =
1

m

mX

i=1

rfi(x)

r2
f(x) =

1

m

mX

i=1

r2
fi(x)Hessian r2

f(x) Stochastic Hessian r2
fi(x)

Preconditioned system

PAx = Pb

P =
1

m

mX

i=1

Pi Stochastic system PiAx = Pib

Preconditioner P P =
1

m

mX

i=1

Pi Stochastic preconditioner Pi

Stochastic gradient rfi(x)

Stochastic function fi(x)

Operator �(x) Stochastic operator �i(x)�(x) =
1

m

mX

i=1

�i(x)

Set L L =
m\

i=1

Li Stochastic set Li



Stochastic	Reformulations
Reformulation Key concepts Algorithm	(special	case)

Stochastic	optimization	problem stochastic	function

stochastic	gradient

stochastic	Hessian

Stochastic	gradient	descent

Stochastic	linear	system
stochastic	system

stochastic	precondition.

Stochastic	precond.	method

Stochastic	fixed	point	problem

stochastic	operator

Stochastic	fixed	point	method

Stochastic	intersection	problem

stochastic	set

Stochastic	projection	method

x

t+1 = ⇧Li(x
t)

x

t+1 = �i(xt)

x

t+1 = arg min
x : PiAx=Pib

kx� x

tk

x

t+1 = x

t �rfi(xt)

Solve

 
1

m

mX

i=1

Pi

!
Ax =

 
1

m

mX

i=1

Pi

!
b

Solve x =

1

m

mX

i=1

�i(x)

Minimize
1

m

mX

i=1

fi(x)

Find x 2
m\

i=1

Li



Basic	Method



Methods	Beyond	the	Special	Case

• General	
• General
• Introduction	of	a	stepise
• more	methods:	stochastic	Newton,	stochastic	proximal	
point	method

S = ei with probability 1/mD is defined by:
B = I (identity	matrix)

We	proposed	some	“natural”	methods	in	the	special	case:

We	now	proceed	to	the	general	case:

B
D

! > 0



Basic	Method



Stochastic	Gradient	Descent

constant	stepsize

a	key	method	in	stochastic	optimization	
&	machine	learning

stochastic	gradient

St ⇠ D

x

t+1 = x

t � !rfSt(xt)

Minimize f(x)
def
= ES⇠D[fS(x)]

Stochastic	Optimization	Problem



Stochastic	Newton	Method

B- pseudoinverse	of	the	
stochastic	Hessian

stochastic	gradientConstant	stepsize

St ⇠ D

x

t+1 = x

t � !(r2
fSt)†BrfSt(xt)

Minimize f(x)
def
= ES⇠D[fS(x)]

Stochastic	Optimization	Problem



Stochastic	Proximal	Point	Method

x

t+1 = arg min
x2Rn

⇢
f

S

t(x) +
1� !

2!
kx� x

tk2
B

�

St ⇠ D

Term	encouraging	proximity	
to	the	last	iterate

Stochastic	function
(unbiased	estimate	of	f)

Minimize f(x)
def
= ES⇠D[fS(x)]

Stochastic	Optimization	Problem



Stochastic	Preconditioning	Method
Stochastic	Linear	System

Solve PAx = Pb

P = ES⇠D[B
�1A>HS ]

x

t+1 = arg min
x : PStAx=PStb

kx� x

tk
B

St ⇠ D

Stochastic	preconditioner
(unbiased	estimator	of	P)



Stochastic	Fixed	Point	Method

Relaxation	parameter

Stochastic	operator
(unbiased	estimator	of	the	fixed	point	operator									)

Stochastic	Fixed	Point	Problem

St ⇠ D

x

t+1 = !�St(xt) + (1� !)xt

Solve x = �(x)

�(x) = ES⇠D [�S(x)]

�S(x) = ⇧B
LS

(x)

�(x)



Stochastic	Projection	Method

x

t+1 = !⇧B
LSt

(xt) + (1� !)xt

Stochastic	Intersection	Problem

Find x 2
T

S⇠D LS

Relaxation	
parameter

Stochastic	projection	map

T
S⇠D LS

Stochastic	set
“unbiased”	estimator	of	the	set																



Equivalence	&	
Exactness



Equivalence	of	Reformulations

Theorem

The	4	stochastic	reformulations	are	equivalent

set	of	minimizers	of	the	stochastic	optimization	problem	
=	

set	of	solutions	of	the	stochastic	linear	system	
=	

set	of	fixed	points	of	the	stochastic	fixed	point	problem	
=	

set	of	solutions	of	the	stochastic	intersection	problem



Equivalence	of	Algorithms

Theorem

All	algorithms	we	described	are	equivalent

1. Stochastic	Gradient	Descent	
2. Stochastic	Newton	Method
3. Stochastic	Proximal	Point	Method
4. Stochastic	Preconditioning	Method
5. Stochastic	Fixed	Point	Method
6. Stochastic	Projection	Method



Exactness	of	Reformulations

Theorem The	set	of	solutions	of	all
4	stochastic	problems	is

set	of	minimizers	of	the	stochastic	optimization	problem	
=	

set	of	solutions	of	the	stochastic	linear	system	
=	

set	of	fixed	points	of	the	stochastic	fixed	point	problem	
=	

set	of	solutions	of	the	stochastic	intersection	problem

E[HS ] � 0
L def

= {x : Ax = b}



Summary



Deterministic concept Decomposition Stochastic	estimate

Function f

Gradient rf(x)

Hessian r2
f(x)

Preconditioned system

PAx = Pb

Preconditioner P

Operator �(x)

Set L

f(x) = E [fS(x)]

rf(x) = E [rfS(x)]

r2
f(x) = E

⇥
r2

fS(x)
⇤

�(x) = E
⇥
⇧B

LS
(x)

⇤

Stochastic preconditioner

PS = B�1A>HS

Stochastic operator

�S(x) = ⇧B
LS

(x)

Stochastic system

PSAx = PSb

P = E[PS ]

PA = E[PSA]

Pb = E[PSb]

LS = {x : S

>
Ax = S

>
b}

Stochastic set

Stochastic function

fS(x) =
1
2kAx� bk2HS

rfS(x) = A>HS(Ax� b)

Stochastic gradient

Stochastic Hessian

r2fS(x) = A>HSA

L =
T

S⇠D LS

ES⇠D [1LS (x)] = 1T
S⇠D LS

(x)



REFORMULATION BASIC	METHOD

Stochastic	optimization	problem

Stochastic	linear	system Stochastic	Preconditioning	Method	(SPM)

Stochastic	fixed	point	problem Stochastic	Fixed	Point	Method	(SFPM)

Stochastic	intersection	problem Stochastic	Projection	Method	(SPM)

x

t+1 = x

t � !rfSt(xt)

x

t+1 = x

t � !(r2
fSt)†BrfSt(xt)

x

t+1 = arg min
x2Rn

⇢
f

S

t(x) +
1� !

2!
kx� x

tk2
B

�

SGD

SNM

SPPM

Solve PAx = Pb

P = E[PS ]

Minimize f(x)

f(x) = E[fS(x)]

x

t+1 = arg min
x : PStAx=PStb

kx� x

tk
B

Solve x = �(x)

�(x) = E[�S(x)]

x

t+1 = !⇧B
LSt

(xt) + (1� !)xt
Find x 2 L

L =
\

S⇠D
LS

x

t+1 = !�St(xt) + (1� !)xt



Convergence



Key	Matrix

W
def
= B�1/2A>ES⇠D[HS ]AB�1/2

(captures	the	convergence	of	the	basic	method)

W = U⇤U> =
nX

i=1

�iuiu
>
i

Eigenvalue	
decomposition

Smallest	nonzero	eigenvalue:

Largest	eigenvalue:

�+
min

�
max

HS = S(S>AB�1A>S)†S>



Basic	Method:	Complexity

E[U>
B

1/2(xt � x

⇤)] = (I � !⇤)tU>
B

1/2(x0 � x

⇤)

stepsize /	relaxation	parameter

Theorem	[R	&	Takáč,	2017]

W
def
= B�1/2A>ES⇠D[HS ]AB�1/2 = U⇤U>



Basic	Method:	Complexity

t � �
max

�+

min

log

✓
1

✏

◆
kE[xt � x

⇤]k2B  ✏

! = 1/�
max

! = 1

t � 1

�+
min

log

✓
1

✏

◆
kE[xt � x

⇤]k2B  ✏

! = 1

t � 1

�+
min

log

✓
1

✏

◆
E
⇥
kxt � x

⇤k2B
⇤
 ✏

Convergence	of	Expected	Iterates

L2	Convergence



Parallel	&	
Accelerated	Methods



Parallel	Method



Parallel	Method

x

t+1 = 1
⌧

P⌧
i=1 �!(xt

, S

t
i )

i.i.d.

“Run 1 step of the basic method from x

t

several times independently,

and average the results.”

One step of the basic method from x

t



Parallel	Method:	Complexity

t � 1

�+
min

log

✓
1

✏

◆

E
⇥
kxt � x

⇤k2B
⇤
 ✏

L2	Convergence

⌧ = 1

or

⌧ = +1

t � �
max

�+

min

log

✓
1

✏

◆



Accelerated	Method



Accelerated	Method

Acceleration	parameter	
(between	1	and	2)

x

t+1 = ��!(xt
, S

t) + (1� �)�!(xt�1
, S

t�1)

St, St�1 ⇠ D (independent)

One step of the basic method from x

t�1

One step of the basic method from x

t



Accelerated	Method:	Complexity

Convergence	of	Iterates

kE[xt � x

⇤]k2B  ✏

Basic	Method	depends	on																			!

t �

s
�
max

�+

min

log

✓
1

✏

◆

�
max

�+

min



Acceleration	Accelerates



More	Relaxation	Requires	
More	Acceleration



Detailed	Complexity	Results



Summary



Summary
• 4	Equivalent	stochastic	reformulations	of	a	linear	system

– Stochastic	optimization
– Stochastic	fixed	point	problem
– Stochastic	linear	system
– Probabilistic	intersection

• 3	Algorithms
– Basic	(SGD,	stochastic	Newton	method,	stochastic	fixed	point	method,	

stochastic	proximal	point	method,	stochastic	projection	method,	…)
– Parallel
– Accelerated	

• Iteration	complexity	guarantees	for	various	measures	of	success
– Expected	iterates	(closed	form)
– L1	/	L2	convergence
– Convergence	of	f;	ergodic	…



Related	Work
Robert	Mansel Gower	and	P.R.
Randomized	Iterative	Methods	for	Linear	Systems
SIAM	J.	Matrix	Analysis	&	Applications	36(4):1660-1690, 2015

Robert	Mansel Gower	and	P.R.
Stochastic	Dual	Ascent	for	Solving	Linear	Systems
arXiv:1512.06890, 2015

• 2017	IMA	Fox	Prize	(2nd Prize)	in	
Numerical	Analysis

• Most	downloaded	SIMAX	paper

Robert	Mansel Gower	and	P.R.
Randomized	Quasi-Newton	Methods	are	Linearly	Convergent	Matrix	Inversion	Algorithms
arXiv:1602.01768, 2016

Robert	Mansel Gower,	Donald	Goldfarb	and	P.R.
Stochastic	Block	BFGS:	Squeezing	More	Curvature	out	of	Data
ICML	2016

Basic	method	with	unit	stepsize and	full	rank	A:

Removal	of	full	rank	assumption	+	duality:

Inverting	matrices	&	connection	to	Quasi-Newton	updates:

Computing	the	pseudoinverse:

Robert	Mansel Gower	and	P.R.
Linearly	Convergent	Randomized	Iterative	Methods	for	Computing	the	Pseudoinverse	
arXiv:1612.06255,	2016

Application	in	machine	learning:

We	now	move	here



Duality:	Basic	Method



Robert	Mansel Gower	and	P.R.
Randomized	Iterative	Methods	for	Linear	Systems
SIAM	Journal	on	Matrix	Analysis	and	Applications	36(4):1660-
1690, 2015

Robert	Mansel Gower	(Edinburgh	->	INRIA)

Robert	Mansel Gower	and	P.R.
Stochastic	Dual	Ascent	for	Solving	Linear	Systems
arXiv:1512.06890, 2015

[GR’15a]

[GR’15b]



Recall	the	Initial	Problem:
Solve	a	Linear	System

Ax = b

m

n

m

2 Rn

Assumption	1
The	system	is	consistent	(i.e.,	has	a	solution)



Optimization	Formulation

minimize P (x) :=

1
2kx� ck2B

subject to Ax = b

x 2 Rn

maximize D(y) := (b�Ac)>y � 1
2kA

>yk2B�1

subject to y 2 Rm

A 2 Rm⇥n

B � 0
Primal	Problem

Dual	Problem

1
2 (x� c)>B(x� c)

Unconstrained	non-strongly	concave	
quadratic	maximization	problem



Stochastic	Dual	Subspace	Ascent

yt+1 = yt + S�t

�t := argmin�2Qt k�k2
Qt

:= argmax� D(yt + S�)

A	random																	matrix		drawn	i.i.d.	in	each	iteration						S ⇠ D

Moore-Penrose	pseudo-inverse
of	a	small																	matrix⌧ ⇥ ⌧

⌧

mmm ⌧

m⇥ ⌧

�t =
�
S>AB�1A>S

�†
S> �

b�A
�
c+B�1A>yt

��



Dual	Correspondence	Lemma

Lemma

Primal	error	
(in	distance)

D(y⇤)�D(y) = 1
2kx(y)� x

⇤k2B

A�ne mapping from Rm
to Rn

Dual	error	
(in	function	values)

Primal	optimal	point
(Any)	dual	

optimal	point

x(y) := c+B

�1
A

>
y

x

⇤ = rg

⇤(A>
y

⇤)



Primal	Method	=	Linear	Image	of	
the	Dual	Method

Dual	iterates	produced	
by	SDA

x

t := x(yt) = c+B

�1
A

>
y

t

Corresponding	primal
iterates



Convergence



Main	Assumption

The	matrix

is	nonsingular

Assumption	2

ES⇠D

h
S
�
S>AB�1A>S

�†
S>

i

HS



Complexity	
of	SDSA U0 = 1

2kx
0 � x

⇤k2B

Primal	iterates:

Residual:

Dual	error:

Primal	error:

Duality	gap:

Theorem	[Gower &	R.,	2015]
GR’15aE

⇥
1
2kx

t � x⇤k2B
⇤
 ⇢tU0

E[kAxt � bkB ]  ⇢t/2kAkB
p

2⇥ U0

E[OPT �D(yt)]  ⇢tU0

E[P (xt)�OPT ]  ⇢tU0 + 2⇢t/2
p

OPT ⇥ U0

E[P (xt)�D(yt)]  2⇢tU0 + 2⇢t/2
p

OPT ⇥ U0

⇢ := 1� �+
min

⇣
B�1/2A>E[H]AB�1/2

⌘



The	Rate:	Lower	and	Upper	Bounds

Theorem

The	lower	bound	is	good	when:	
i) the	dimension	of	the	search	space	in	the	“constrain	and	
approximate”	viewpoint	is	large,	
ii)	the	rank	of	A is	small

Insight:

Insight:

0  1� Rank(S>A)

Rank(A)
 ⇢ < 1

⇢  1 always

⇢ < 1 if Assumption 2 holds

Rank(S>A) = dim(Range(B�1A>S)) = Tr(B�1Z)



Extensions



Robert	Mansel Gower	and	P.R.
Randomized	Quasi-Newton	Methods	are	Linearly	Convergent
Matrix	Inversion	Algorithms
arXiv:1602.01768, 2016

Extensions	1

Matrix	Inversion	
&	Quasi-Newton	Updates

Nicolas	Loizou and	P.R.
A	New	Perspective	on	Randomized	Gossip	Algorithms
In Proceedings	of	The	4th IEEE	Global	Conference	on	Signal	
Processing, 2016

Randomized	Gossip
Algorithms



Robert	Mansel Gower,	Donald	Goldfarb	and	P.R.
Stochastic	Block	BFGS:	Squeezing	More	Curvature	Out	of	Data
In: Proceedings	of	the	33th	International	Conference	on	Machine	
Learning, pp 1869-1878,	2016

Extensions	2

ERM

P.R.	and	Martin	Takáč
Stochastic	Reformulations	of	Linear	Systems:	Algorithms	and	
Convergence	Theory
arXiv:1706.01108, 2017

Stuff	I	talked	
about	earlier…



Duality:
More	Insights



1.	Relaxation	Viewpoint
“Sketch	and	Project”

x

t+1 = arg min
x2Rn

kx� x

tk2
B

convergence	in	1	stepS	=	identity	matrix

subject to S

>
Ax = S

>
b

E.S.	Coakley,	V.	Rokhlin and	M.	Tygert.	A	Fast	Randomized	Algorithm	for	Orthogonal	
Projection.	SIAM	Journal	on	Scientific	Computing 33(2),	pp.	849–868,	2011

min
x

{kx� x

0k : Ax = 0}

kxk2B = x

>
Bx



2.	Approximation	Viewpoint	
“Constrain	and	Approximate”

x

t+1 = arg min
x2Rn

kx� x

⇤k2
B

� is free

subject to x = x

t
+B

�1
A

>
S�



3.	Geometric	Viewpoint	
“Random	Intersect”

x

⇤

x

t

x

t +Range(B�1
A

>
S)

x

⇤ +Null(S>
A)

{xt+1} =
�
x

⇤ +Null(S>
A)

� \ �
x

t +Range(B�1
A

>
S)

�

(1) x

t+1
= argmin

x

kx� x

tk
B

subject to S

>
Ax = S

>
b

(2)

(1)

(2) x

t+1
= argmin

x

kx� x

⇤k
B

subject to x = x

t

+B

�1
A

>
S�

x

t+1



4.	Algebraic	Viewpoint
“Random	Linear	Solve”

x

t+1
= solution in x of the linear system

Unknown Unknown	

S

>
Ax = S

>
b

x = x

t +B

�1
A

>
S�



5.	Algebraic	Viewpoint
“Random	Update”

Moore-Penrose	
pseudo-inverse

Random	Update	Vector

x

t+1 = x

t �B

�1
A

>
S(S>

AB

�1
A

>
S)†S>(Ax

t � b)



6.	Analytic	Viewpoint
“Random	Fixed	Point”

Random	Iteration	Matrix

x

t+1 � x

⇤ = (I �B

�1
Z)(xt � x

⇤)

(B�1Z)2 = B�1Z

(I �B�1Z)2 = I �B�1Z

Z := A>S(S>AB�1A>S)†S>A

B�1Z projects orthogonally onto Range(B�1A>S)
I �B�1Z projects orthogonally onto Null(S>A)



EXTRA	TOPIC:	
Special	Cases



Special	Case	1:	
Randomized	Kaczmarz

Method



Randomized	Kaczmarz (RK)	Method

S = ei = (0, . . . , 0, 1, 0, . . . , 0) with probability pi

T.	Strohmer and	R.	Vershynin.	A	Randomized	Kaczmarz Algorithm	with	Exponential	
Convergence.	Journal	of	Fourier	Analysis	and	Applications 15(2),	pp.	262–278,	2009

M.	S.	Kaczmarz.	Angenaherte Auflosung von	Systemen linearer Gleichungen,	Bulletin	
International	de	l’Académie Polonaise	des	Sciences	et	des	Lettres.	Classe des	Sciences	
Mathématiques et	Naturelles.	Série A,	Sciences	Mathématiques 35,	pp.	355–357,	1937

Kaczmarz method	(1937)

Randomized	Kaczmarz method	(2009)

x

t+1 = x

t � Ai:x
t � bi

kAi:k22
(Ai:)

T

RK	arises	as	a	special	case	for	parameters	B,	S	set	as	follows:
B = I

RK was analyzed for pi =
kAi:k2

kAk2
F



RK:	Derivation	and	Rate

E
⇥
kxt � x

⇤k22
⇤

 
1�

�min

�
A

T
A

�

kAk2F

!t

kx0 � x

⇤k22

B = I

S = ei
x

t+1 = x

t � Ai:x
t � bi

kAi:k22
(Ai:)

T

General	Method

Special	Choice	of	Parameters

Complexity	Rate

x

t+1 = x

t � B

�1
A

T
S (ST

AB

�1
A

T
S)† S

T (Ax

t � b)

P(S = ei) = pi

pi =
kAi:k2

kAk2F



RK	=	SGD	with	a	“smart”	stepsize

Ax = b vs min
x

1

2
kAx� bk2

fi(x) =
1

2pi
(Ai:x� bi)

2

f(x) =
mX

i=1

pifi(x) = Ei [fi(x)]

x

t+1 = x

t � Ai:x
t � bi

kAi:k22
(Ai:)

T
x

t+1 = x

t � h

trfi(x
t)

= x

t � ht

pi
(Ai:x

t � bi)(Ai:)
T

RK	is	equivalent	to	applying	SGD	with	a	specific	(smart!)	constant	stepsize!

x

t+1 = arg min
x2Rn

kx� x

⇤k22 s.t. x = x

t + y(A
i:)

T

, y 2 R

Apply	RK

Apply	SGD



Application:	Average	Consensus

1
2

3

4

c1 = 10
c2 = 20

c3 = 30

c4 = 40

min
x2R4

1
2kx� ck22

subject to Ax = 0

Insight:	Randomized	Kaczmarz =	Randomized	Gossip
Now	also	have:	dual	interpretation,	block	variants,	…

A =

0

@
1 �1 0 0
0 1 �1 0
0 1 0 �1

1

A



c3 = 25

c2 = 25

Application:	Average	Consensus

1
2

3

4

c1 = 10

c4 = 40

min
x2R4

1
2kx� ck22

subject to Ax = 0

Insight:	Randomized	Kaczmarz =	Randomized	Gossip
Now	also	have:	dual	interpretation,	block	variants,	…

A =

0

@
1 �1 0 0
0 1 �1 0
0 1 0 �1

1

A



c2 = 17.5
c1 = 17.5

c3 = 25

Application:	Average	Consensus

1
2

3

4

c4 = 40

min
x2R4

1
2kx� ck22

subject to Ax = 0

Insight:	Randomized	Kaczmarz =	Randomized	Gossip
Now	also	have:	dual	interpretation,	block	variants,	…

A =

0

@
1 �1 0 0
0 1 �1 0
0 1 0 �1

1

A



c3 = 21.25

c2 = 21.25
c1 = 17.5

Application:	Average	Consensus

1
2

3

4

c4 = 40

min
x2R4

1
2kx� ck22

subject to Ax = 0

Insight:	Randomized	Kaczmarz =	Randomized	Gossip
Now	also	have:	dual	interpretation,	block	variants,	…

A =

0

@
1 �1 0 0
0 1 �1 0
0 1 0 �1

1

A



RK:	Further	Reading

A.	Ramdas.	Rows	vs Columns	for	Linear	Systems	of	Equations	–
Randomized	Kaczmarz or	Coordinate	Descent?	arXiv:1406.5295,	2014

D.	Needell.	Randomized	Kaczmarz solver	for	noisy	linear	systems.	BIT
50	(2):	395-403,	2010

D.	Needell and	J.	Tropp.	Paved	with	good	intentions:	analysis	of	a	
randomized	block	Kaczmarz method.	Linear	Algebra	and	its	
Applications 441:199-221,	2012

D.	Needell,	N.	Srebro and	R.	Ward.	Stochastic	gradient	descent,	
weighted	sampling	and	the	randomized	Kaczmarz algorithm.	
Mathematical	Programming	155(1-2):549-573,	2016



Special	Case	2:	
Randomized	Coordinate	

Descent



Randomized	Coordinate	Descent	in	2D

a2 = b2

N

S

EW



Randomized	Coordinate	Descent	in	2D

a2 = b2

1

N

S

EW



Randomized	Coordinate	Descent	in	2D

a2 = b2

1

N

S

EW

2



Randomized	Coordinate	Descent	in	2D

a2 = b2

1

2
3 N

S

EW



Randomized	Coordinate	Descent	in	2D

a2 = b2

1

2
3

4
N

S

EW



Randomized	Coordinate	Descent	in	2D

a2 = b2

1

2
3

4
N

S

EW

5



Randomized	Coordinate	Descent	in	2D

a2 = b2

1

2
3

4
5

6

N

S

EW



Randomized	Coordinate	Descent	in	2D

a2 = b2

1

2
3

4
5

N

S

EW

6
7



Randomized	Coordinate	Descent	(RCD)

S = ei = (0, . . . , 0, 1, 0, . . . , 0) with probability pi

A.	S.	Lewis	and	D.	Leventhal.	Randomized	methods	for	linear	constraints:	convergence	
rates	and	conditioning.	Mathematics	of	OR	35(3),	641-654,	2010	(arXiv:0806.3015)

RCD	(2008)

RCD	arises	as	a	special	case	for	parameters	B,	S	set	as	follows:

Assume:	Positive	definite

min
x2Rn

⇥
f(x) = 1

2x
T

Ax� b

T

x

⇤

B = A

Recall:	In	RK	we	had	B =	I

x

t+1 = x

t � (Ai:)Txt � bi

Aii
e

i
RCD was analyzed for pi =

Aii
Tr(A)

x

⇤ = A

�1
b



x

t+1 = x

t � (Ai:)Txt � bi

Aii
e

i

RCD:	Derivation	and	Rate

S = ei

General	Method

Special	Choice	of	Parameters

Complexity	Rate

x

t+1 = x

t � B

�1
A

T
S (ST

AB

�1
A

T
S)† S

T (Ax

t � b)

P(S = ei) = pi

B = A

pi =
Aii

Tr(A)
E
⇥
kxt � x

⇤k2A
⇤


✓
1� �min(A)

Tr(A)

◆t

kx0 � x

⇤k2A



RCD:	“Standard”	Optimization	Form

x

t+1 = x

t � (Ai:)Txt � bi

Aii
e

i

Yurii Nesterov.	Efficiency	of	coordinate	descent	methods	on	huge-scale	optimization	
problems.	SIAM	J.	on	Optimization,	22(2):341–362,	2012	(CORE	Discussion	Paper	2010/2)	

min
x2Rn

f(x)

Nesterov assumed	that	the	
following	inequality	holds	for	
all	x, h	and	i:

x

t+1 = x

t � 1

Li
rif(x

t)ei

Convex	and	
smooth

f(x+ he

i)  f(x) +rif(x)h+ Li
2 h

2

Nesterov’s RCD	method:

Given	a	current	iterate	x,	choosing	
h	by	minimizing	the	RHS	gives:

Nesterov considered
the	problem:

We	recover	RCD	as	we	have	seen	it:

f(x) = 1
2x

T
Ax� b

T
x )

rif(x) = (Ai:)
T
x� biLi = Aii



Experiment
Machine:	128	nodes	of Hector	Supercomputer	(4096	cores)	

Problem: LASSO, n =	1	billion, d =	0.5	billion,	3	TB

P.R.	and	Martin	Takáč.	Distributed	coordinate	descent	for	learning	
with	big	data.	Journal	of	Machine	Learning	Research 17(75):1-25,	
2016 (arXiv:1310.2059,	2013)



LASSO:	3TB	data	+	128	nodes
Er
ro
r

Time	(sec)



Experiment

Machine:	128	nodes	of	Archer	Supercomputer	

Problem:	LASSO,	n =	5	million,	d =	50	billion,	5	TB
(60,000	nnz per	row	of	A)

2

Olivier	Fercoq,	Zheng Qu,	P.R.	and	Martin	Takáč.	Fast	distributed	
coordinate	descent	for	minimizing	non-strongly	convex	losses.	In	
2014	IEEE	Int.	Workshop	on	Machine	Learning	for	Signal	Proc,	2014



Special	Case	3:	
Randomized	Newton	

Method



Randomized	Newton	(RN)
Z.	Qu,	PR,	M.	Takáč and	O.	Fercoq.	Stochastic	Dual	Newton	Ascent	for	Empirical	Risk	
Minimization.	ICML	2016

RN	arises	as	a	special	case	for	parameters	B,	S	set	as	follows:

Assume:	Positive	definite

min
x2Rn

⇥
f(x) = 1

2x
T

Ax� b

T

x

⇤

B = A

x

⇤ = A

�1
b

S = I:C with probability pC

RCD is special case with pC = 0 whenever |C| 6= 1

X

C✓{1,...,n}

pC = 1pC � 0 8C ✓ {1, . . . , n}



RN:	Derivation
General	Method

Special	Choice	of	Parameters

x

t+1 = x

t � B

�1
A

T
S (ST

AB

�1
A

T
S)† S

T (Ax

t � b)

B = A

S = I:C with probability pC

x

t+1 = x

t � I:C ((I:C)
T
AI:C)

�1 (I:C)
T (Axt � b)

This	method	minimizes	f	exactly	in	a	random	subspace	
spanned	by	the	coordinates	belonging	to	C



|C| = 2

C = {2, 7}

x

t+1

x

t e2

e7



Experiment	4

Machine:	laptop

Problem:	Ridge	Regression,	n =	8124,	d =	112

Zheng	Qu,	P.R.,	Martin	Takáč and	Olivier	Fercoq,	SDNA:	Stochastic	
Dual	Newton	Ascent	for	Empirical	Risk	Minimization.	ICML,	2016
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SDCA 1
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SDNA 256



Special	Case	4:
Gaussian	Descent



Gaussian	Descent
General	Method

Special	Choice	of	Parameters

Complexity	Rate

x

t+1 = x

t � B

�1
A

T
S (ST

AB

�1
A

T
S)† S

T (Ax

t � b)

x

t+1 = x

t � S

T (Axt � b)

S

T
AB

�1
A

T
S

B

�1
A

T
SS ⇠ N(0,⌃)

Positive	definite	covariance	matrix

E
⇥
kxt � x

⇤k2B
⇤
 ⇢

tkx0 � x

⇤k2B



x

⇤

x

0

⇠ := B�1/2ATS

⇠ ⇠ N(0,⌦)

⌦ := B�1/2AT⌃AB�1/2

x

t+1 = x

t � h

t
B

�1/2
⇠



Gaussian	Descent:	The	Rate

Lemma	[Gower	&	R,	2015]

E


⇠⇠T

k⇠k22

�
⌫ 2

⇡

⌦

Tr(⌦)

1� 1

n
 ⇢  1� 2

⇡

�min(⌦)

Tr(⌦)

This	follows	from	the	general	lower	bound



Gaussian	Descent:	Further	Reading

Yurii Nesterov and	Vladimir	Spokoiny.	Random	gradient-free	
minimization	of	convex	functions.	Foundations	of	Computational	
Mathematics 17(2):527-566,	2017	

S.	U.	Stitch,	C.	L.	Muller	and	G.	Gartner.	Optimization	of	convex	
functions	with	random	pursuit.	SIAM	Journal	on	Optimization	
23(2):1284-1309,	2014

S.	U.	Stitch.	Convex	optimization	with	random	pursuit.	PhD	Thesis,	
ETH	Zurich,	2014



EXTRA	TOPIC:
Stochastic	

Preconditioning



Stochastic	Preconditioning	

Definition	[R	&	Takáč,	2017]

Given	a	family	of	randomized	algorithms	for	solving	
some	problem,	indexed	by	a	set	of	randomization	
strategies	defining	the	family,	how	to	choose	the	
best	method	in	the	family?

Our	context:

How to choose D and B?



Fixing	Probabilities,
Choosing	Matrices



Formalizing	the	Problem
Consider family of distributions D parameterised as follows:

S = Si 2 Rm
(for i = 1, 2, . . . ,m) with probability 1/m

Probabilities	are	fixed	!These	vectors	can	be	chosen	!

! = 1
t � 1

�+
min

log

✓
1

✏

◆
E
⇥
kxt � x

⇤k2B
⇤
 ✏

Theorem	[Gower	&	R,	2015] For	the	basic	method	we	have

Recall:

For simplicity, assume A is n⇥ n and positive definite

Choose B = A

We	will	focus	on	maximizing	this



Problem	and	Solution

max

S1,...,Sm2Rm
�+
min(W )

W
def
= B�1/2A>ES⇠D[HS ]AB�1/2

Theorem	[Gower	&	R,	2015]

The optimal vectors S1, . . . , Sm are the eigenvectors of A.

Moreover, W =

1
mI, and hence �i =

1
m for all i

! = 1
E
⇥
kxt � x

⇤k2B
⇤
 ✏

t � m log

�
1
✏

�

“Spectral”	basic	method	(complexity	independent	of	condition	number)

Corollary



Comments
• The	spectral	basic	method	is	impractical	in	its	pure	form

– Need	to	compute	eigenvectors	of	A!
– We	ignore	the	fact	that	choice	of	D	influences	the	cost	of	1	

iteration
• However,	it	highlights	the	potential	power	of	stochastic	

preconditioning
• In	generalizations	(to	convex/nonconvex	opt),	it	only	makes	

sense	to	consider	a	small	family	of	distributions

min
x2Rn

f(x) =
1

m

mX

i=1

f

i

(x)

It	is	natural	to	randomize	over	i.	
This	corresponds	to	the	family:

x

t+1 = x

t � !rfi(xt)

S = ei with probability pi > 0



Importance	Sampling:	
Fixing	Matrices,	Choosing	

Probabilities



Formalizing	the	Problem
Consider family of distributions D parameterised as follows:

Probabilities	can	be	chosen	!These	vectors	are	fixed	!

S = Si 2 Rm
(for i = 1, 2, . . . , r) with probability pi � 0

! = 1
t � 1

�+
min

log

✓
1

✏

◆
E
⇥
kxt � x

⇤k2B
⇤
 ✏

Theorem	[Gower	&	R,	2015] For	the	basic	method	we	have

Again,	we	will	focus	on	maximizing	this



Problem	and	Solution
W

def
= B�1/2A>ES⇠D[HS ]AB�1/2

max

p1,...,pr�0,
P

i pi=1
�+
min(W )

max

p,t
t

subject to

rX

i=1

pi
�
Vi(V

T
i Vi)

†V T
i

�
⌫ t · I,

p � 0,
rX

i=1

pi = 1

Vi = B�1/2ATSi

Sometimes	we	know	that	 �min > 0

Then	we	can	reformulate	the	above	as	a	semidefinite	program:

Leads	to	different	(better)	probabilities	than	”Lipschitz”	or	“uniform”	probabilities	
known	in	convex	optimization.	This	is	because	we	have	more	structure	to	exploit.



RCD:	Optimal	Probabilities	can	Lead		to	
a	Remarkable	Improvement

Rate	for	convenient	
(standard)
probabilities

Rate	for	
optimal	

probabilities	
(solving	SDP)

Lower	bound	
on	the	rate



RK:	Convenient	vs Optimal



RCD:	Convenient	vs Optimal



EXTRA	TOPIC:
Randomized	

Matrix	Inversion





Robert	Mansel Gower	and	P.R.
Randomized	Quasi-Newton	Methods	are	Linearly	Convergent
Matrix	Inversion	Algorithms
arXiv:1602.01768, 2016

Robert	Mansel Gower	(Edinburgh	->	Paris)



The	Problem:	Invert	a	Matrix

n

Assumption	1					Matrix A is	invertible

AX = In

2 Rn⇥n Identity	matrix



Inverting Symmetric	
Matrices



1.	Sketch	and	Project

Xt+1 = arg min
X2Rn⇥n

kX �Xtk2F (B)

subject to S>AX = S>, X = X>

kXkF (B) :=
p

Tr(X>BXB)

• Quasi-Newton	updates	are	of	this	form:	S	=	deterministic	column	vector
• We	get	randomized	block	version	of	quasi-Newton	updates!
• Randomized	quasi-Newton	updates	are	linearly	convergent	matrix	

inversion	methods
• Interpretation:	Gaussian	Inference	(Henning,	2015)

Donald	Goldfarb.	A	Family	of	Variable-Metric	Methods	Derived	by	
Variational Means.	Mathematics	of	Computation	24(109), 1970



Gaussian	Inference

Philipp	Henning
Probabilistic	Interpretation	of	Linear	Solvers
SIAM	Journal	on	Optimization	25(1):234-260, 2015

The	new	iterate																			can	be	interpreted	as	
• the	mean	of	a	posterior	distribution	
• under	a	Gaussian	prior	with	mean	 and	
• noiseless	(and	random)	linear	observation	of		

Xk+1

Xk
A�1



Randomized	QN	Updates

• All	these	QN	methods	arise	as	special	cases	of	the	framework	
• All	are	linearly	convergent,	with	explicit	convergence	rates
• We	also	recover	non-symmetric	updates	such	as	Bad	Broyden

and	Good	Broyden
• We	get	block	versions
• We	get	randomized	versions	of	new	QN	updates

B Equation Method

I AX = I Powel-Symmetric-Broyden (PSB)

A�1 XA�1
= I Davidon-Fletcher-Powell (DFP)

A AX = I Broyden-Fletcher-Goldfarb-Shanno (BFGS)



2.	Constrain	and	Approximate

New	formulation	even	for	
standard	QN	methods

Xt+1 = arg min
X2Rn⇥n

kX �A�1k2F (B)

s.t. X = Xt + ⇤S>AB�1 +B�1A>S⇤>

⇤ 2 Rn⇥⌧ is free

Xt+1 = arg min
X2Rn⇥n

kX �A�1k2F (A) = kAX � Ik2F
s.t. X = Xt + �S> + S�>

� 2 Rn is free

Randomized	BFGS: B = A, ⌧ = 1

RBFGS	performs	“best”	
symmetric	rank-2	update



4.	Random	Update

Xt+1 = Xt � (XtA� I)HAB�1

+B�1AH(AXt � I)(AHAB�1 � I)

H = S(S>AB�1A>S)†S>

6.	Random	Fixed	Point

Xt+1 �A�1 =

(I �B�1A>HA)(Xt �A�1)(I �AHA>B�1)



Complexity	/	Convergence

Theorem	[GR’16]

1

2

��E
⇥
Xt �A�1

⇤��
B
 ⇢tkX0 �A�1kB

E[H] � 0

kMkB := kB1/2MB1/2k2

E
h
kXt �A�1k2F (B)

i
 ⇢tkX0 �A�1k2F (B)

⇢ < 1



Summary:	Matrix	Inversion
• Block version	of	QN	updates
• New	points	of	view	(constrain	and	approximate,	...)
• New	link	between	QN	and	approx.	inverse	preconditioning	
• First	time	randomized	QN	updates	are	proposed
• First	stochastic	method	for	matrix	inversion	(with	

complexity	bounds)?
• Linear	convergence	under	weak	assumptions
• Did	not	talk	about:

– Nonsymmetric variants
– Theoretical	bounds	for	discretely	distributed	S
– Adaptive	randomized	BFGS
– Limited	memory	and factored	implementations
– Experiments (Newton-Schultz;	MinRes)
– Use	in	empirical	risk	minimization	[Gower,	Goldfarb	&	R.	2016]
– Extension:	computation	of	the	pseudoinverse	[Gower	&	R.	2016]



Extensions

Machine	Learning

Matrix	Inversion

Robert	M.	Gower	and	P.R.	
Randomized	Quasi-Newton	Methods	are	Linearly	Convergent	Matrix	
Inversion	Algorithms
arXiv:1602.01768, 2016

Robert	M.	Gower,	Donald	Goldfarb	and	P.R.
Stochastic	Block	BFGS:	Squeezing	More	Curvature	out	of	Data
ICML, 2016

Zheng Qu,	P.R.,	Martin	Takáč and	Olivier	Fercoq
Stochastic	Dual	Newton	Ascent	for	Empirical	Risk	Minimization
ICML, 2016

Ongoing	work:
- Distributed,	accelerated	
and	adaptive	variants
- Optimization	with	linear	
constraints,	…

Solve AX = I



The	End
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