Pioneering research and skills

LONDON

Randomized Optimization Methods

Peter Richtárik

King Abdullah University
of Science and Technology

DATA SCIENCE SUMMER SCHOOL

Paris, Aug 28-Sept 1, 2017

Outline

1. Supervised Learning

- Prediction, loss functions, regularizers, ERM
- Convexity, strong convexity and smoothness
- ERM duality, convex conjugation
- $4+4$ problem classes
- Linear systems as ERM

2. Standard Algorithmic Toolbox in Optimization

- 8 tools: GD, Acceleration, Proximal Trick, Randomized Decomposition (SGD/RCD), Minibatching, Variance Reduction, Importance Sampling, Duality
- Summary

3. Stochastic Methods for Linear Systems

- Stochastic reformulations
- Basic, parallel and accelerated methods
- Dual method
- Extra topics: special cases, stochastic preconditioning, stochastic matrix inversion

Part 1 Supervised Learning

The Idea

Prediction of Object Labels

Set of "natural" objects \mathcal{A} Set of labels \mathcal{B}

Prediction task

NYT articles	Article category	(finite set)	Multi-class classification
E-mails	Spam / not-spam	$\{-1,1\}$	Binary classification
Images	Image category	(finite set)	Multi-class classification
Surveillance videos	Probability of a threat	$[0,1]$	Regression
User clicks	Age	$(0,150]$	Regression

Statistical Model of Objects \& Labels

We assume that object-label pairs occur in nature according to some (unknown) distribution:

$$
\left(a_{i}, b_{i}\right) \sim \mathcal{D}
$$

GOAL:
Given a sampled object a_{i} predict the unknown label b_{i}

Feature Map: Vector Representation of Natural Objects

Feature engineering (manual design) Representation learning (automatic design)

Kernel Trick

Input Space
Feature Space

Predictor

Parameter defining the predictor

$h_{x}: \mathcal{A} \mapsto \mathbb{R}, \quad x \in \mathbb{R}^{d}$

| $h_{x}\left(a_{i}\right)$ | Feature map | |
| :---: | :---: | :---: | :---: | :---: |
| Linear Predictor | $x^{\top} \Phi\left(a_{i}\right)$ | $\Phi\left(a_{i}\right) \quad$ explicit |
| Neural Network | $x_{l}^{\top} \sigma\left(x_{l-1}^{\top} \sigma\left(\cdots x_{2}^{\top} \sigma\left(x_{1}^{\top} a_{i}\right)\right)\right)$ | $\sigma\left(x_{l-1}^{\top} \sigma\left(\cdots x_{2}^{\top} \sigma\left(x_{1}^{\top} a_{i}\right)\right)\right)$ |

Loss and Expected Loss

$$
\operatorname{loss}\left(h_{x}\left(a_{i}\right), b_{i}\right)
$$

Predicted label

True label

We want the expected loss ("true risk") to be small:
$\min _{x \in \mathbb{R}^{d}} \mathbf{E}_{\left(a_{i}, b_{i}\right) \sim \mathcal{D}}\left[\operatorname{loss}\left(h_{x}\left(a_{i}\right), b_{i}\right)\right]$

Empirical Risk Minimization

Draw i.i.d. data samples from the distribution

$$
\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right), \ldots,\left(a_{n}, b_{n}\right) \sim \mathcal{D}
$$

Output predictor which minimizes the Empirical Risk:

Monte-Carlo integration (sample average approximation)

$$
\min _{x \in \mathbb{R}^{d}} \frac{1}{n} \sum_{i=1}^{n} \operatorname{loss}\left(h_{x}\left(a_{i}\right), b_{i}\right)+g(x)
$$

From now on, let: $\quad h_{x}\left(a_{i}\right)=\Phi\left(a_{i}\right)^{\top} x \quad$ (linear predictor)

$$
\begin{gathered}
\Phi\left(a_{i}\right)=a_{i} \quad \text { (objects are already represented as vectors) } \\
f_{i}\left(a_{i}^{\top} x\right) \stackrel{\text { def }}{=} \operatorname{loss}\left(a_{i}^{\top} x, b_{i}\right) \quad \text { (hiding the label) }
\end{gathered}
$$

Loss Functions

\&
Regularizers

Regularizers

Examples of ERM Problems

$f_{i}(t)$		$g(x)$				
Least Squares	$\frac{1}{2}\left(t-b_{i}\right)^{2}$	0				
Ridge Regression	$\frac{1}{2}\left(t-b_{i}\right)^{2}$	$\frac{\mu}{2}\\|x\\|_{2}^{2} \quad\\|x\\|_{2}=\sqrt{x^{\top} x}$				
LASSO	$\frac{1}{2}\left(t-b_{i}\right)^{2}$	$\mu\\|x\\|_{1} \quad\\|x\\|_{1}=\sum_{i}\left\|x_{i}\right\|$				
Non-negative Least Squares Regression	$\frac{1}{2}\left(t-b_{i}\right)^{2}$	$1_{x \geq 0}(x)= \begin{cases}0 & x \geq 0, \\ +\infty & \text { otherwise. }\end{cases}$				
SVM	$\max \left\{0,1-b_{i} \cdot t\right\}$	$\frac{\mu}{2}\\|x\\|_{2}^{2}$				
Logistic Regression	$\log \left(1+e^{-b_{i} t}\right)$	$\frac{\mu}{2}\\|x\\|_{2}^{2}$				
Linear System (Best Approximation)	$1_{\left\{b_{i}\right\}}(t)= \begin{cases}0 & t=b_{i} \\ +\infty & \text { otherwise }\end{cases}$	$\frac{1}{2}\left\\|x-x^{0}\right\\|_{B}^{2}$				
L1 Regression	$\left\|t-b_{i}\right\|$	0				

SVM: Support Vector Machine

Source: wikipedia

Typical Function Classes

$$
f: \mathbb{R}^{d} \rightarrow \mathbb{R} \quad \quad \text { Defining property }
$$

If twice differentiable

convex	$f(\alpha x+(1-\alpha) y) \leq \alpha f(x)+(1-\alpha) f(y)$ If continuously differentiable: $\begin{gathered} f(x)+\langle\nabla f(x), y-x\rangle \leq f(y) \\ 0 \leq\langle\nabla f(x)-\nabla f(y), x-y\rangle \end{gathered}$	$0 \preceq \nabla^{2} f(x)$						
μ-strongly convex	$f(\alpha x+(1-\alpha) y) \leq \alpha f(x)+(1-\alpha) f(y)-\frac{\mu}{2} \alpha(1-\alpha)\\|x-y\\|^{2}$ If continuously differentiable: $\begin{gathered} f(x)+\langle\nabla f(x), y-x\rangle+\frac{\mu}{2}\\|y-x\\|^{2} \leq f(y) \\ \mu\\|x-y\\|^{2} \leq\langle\nabla f(x)-\nabla f(y), x-y\rangle \end{gathered}$	$\mu \cdot I \preceq \nabla^{2} f(x)$						
L-smooth	$\begin{gathered} \\|\nabla f(x)-\nabla f(y)\\| \leq L\\|x-y\\| \\ f(y) \leq f(x)+\langle\nabla f(x), y-x\rangle+\frac{L}{2}\\|y-x\\|^{2} \end{gathered}$	$\nabla^{2} f(x) \leq L \cdot I$						

Visualizing Smoothness and Strong Convexity

$$
\mu \cdot I \preceq \nabla^{2} f(x) \preceq L \cdot I
$$

$$
f(x)+\langle\nabla f(x), y-x\rangle+\frac{\mu}{2}\|y-x\|^{2} \leq f(y) \leq f(x)+\langle\nabla f(x), y-x\rangle+\frac{L}{2}\|y-x\|^{2}
$$

Empirical Risk Minimization

Primal Problem

1820 watercolor caricature of Adrien-Marie Legendre by French artist Julien-Leopold Boilly (see portrait debacle), the only existing portrait known ${ }^{[1]}$

Born	18 September 1752
	Paris, France

Died 10 January 1833 (aged 80) Paris, France

Residence France
Nationality French
Fields Mathematician
Institutions École Militaire
École Normale
École Polytechnique
Alma mater
Known for
Legendre transformation Legendre polynomials
Legendre transform

Introducing the character $\partial^{[2]}$

Convex Conjugate

 (Legendre-Fenchel Transform)- Convex conjugate of a function is the generalization of the Legendre transform
- Convex conjugation was 200 years later studied by Werner Fenchel
- It is a key tool in optimization duality

Werner Fenchel, 1972
Born

Died 24 January 1988 (aged 82)
3 May 1905
Berlin, Germany Copenhagen, Denmark
Residence Germany, Denmark, USA
Citizenship German
Fields Mathematics:
Geometry
Optimization
Institutions University of Copenhagen University of Göttingen

Alma mater University of Berlin
Doctoral Ludwig Bieberbach
advisor
Doctoral Birgit Grodal
students Peter Scherk
Troels Jørgensen
Known for

[^0]
Convex Conjugate

$$
f: \mathbb{R}^{d} \rightarrow \mathbb{R} \cup\{+\infty\} \quad \triangle f^{*}(z) \stackrel{\text { def }}{=} \sup _{x \in \mathbb{R}^{d}}\{\langle z, x\rangle-\hat{f(x)\}}
$$

Theorem

$$
f \text { is } L \text {-smooth } \quad \Leftrightarrow \quad f^{*} \text { is } \frac{1}{L} \text {-strongly convex }
$$

f is μ-strongly convex $\Leftrightarrow f^{*}$ is $\frac{1}{\mu}$-smooth

Examples: $\quad f(x)=\frac{1}{2}\|x\|_{B}^{2} \quad \Rightarrow \quad f^{*}(x)=\frac{1}{2}\|x\|_{B^{-1}}^{2}$

$$
f(x)=1_{C}(x) \quad \Rightarrow \quad f^{*}(z)=\sup _{x \in C}\langle z, x\rangle
$$

Primal and Dual Problems

$\min _{x \in \mathbb{R}^{d}}\left[P(x) \stackrel{\text { def }}{=} \frac{1}{n} \sum_{i=1}^{n} f_{i}\left(a_{i}^{\top} x\right)+g(x)\right]$
$\max _{y \in \mathbb{R}^{n}}\left[D(y) \stackrel{\text { def }}{=}-\frac{1}{n} \sum_{i=1}^{n} f_{i}^{*}\left(-y_{i}\right)-g^{*}\left(\frac{1}{n} A^{\top} y\right)\right]$
concave
$A^{\top}=\left(\begin{array}{ll}a_{1} & a_{2}\end{array}\right.$

$$
\left.a_{n}\right)\left(\begin{array}{c}
a_{1}^{\top} \\
a_{2}^{\top} \\
\vdots \\
a_{n}^{\top}
\end{array}\right)
$$

Duality

Weak Duality: $\quad P(x) \geq D(y) \quad$ (Always)

Strong Duality: $P\left(x^{*}\right)=D\left(y^{*}\right) \quad$ (Under suitable assumptions)

Optimal solutions

If g is strongly convex, we can recover primal optimal solution from dual optimal solution:

$$
x^{*}=\nabla g^{*}\left(\frac{1}{n} A^{\top} y^{*}\right)
$$

Weak Duality \& Optimality Conditions

$P(x)-D(y)=g(x)+g^{*}\left(\frac{1}{n} A^{\top} y\right)+\frac{1}{n} \sum_{i=1}^{n}\left\{f_{i}\left(a_{i}^{\top} x\right)+f_{i}^{*}\left(-y_{i}\right)\right\}=$

$\geq 0 \Leftarrow$ Weak duality $\Rightarrow \quad \geq 0$

Optimality conditions

$$
\begin{aligned}
x & =\nabla g^{*}\left(\frac{1}{n} A^{\top} y\right) \\
y_{i} & =-\nabla f_{i}\left(a_{i}^{\top} x\right) \quad \forall i
\end{aligned}
$$

4 Interesting Classes of Convex ERM Problems
 $$
\min _{x \in \mathbb{R}^{d}}\left[P(x) \stackrel{\text { de }}{=} \frac{1}{n} \sum_{i=1}^{n} f_{i}\left(a_{i}^{\top} x\right)+g(x)\right]
$$
 f_{i}, g convex
 $$
\max _{y \in \mathbb{R}^{n}}\left[D(y) \stackrel{\text { def }}{=}-\frac{1}{n} \sum_{i=1}^{n} f_{i}^{*}\left(-y_{i}\right)-g^{*}\left(\frac{1}{n} A^{\top} y\right)\right]
$$

	$\mu>0$	$\mu=0$						
L-smooth	Ridge regression $\frac{1}{2}\left(t-b_{i}\right)^{2} \quad \frac{\mu}{2}\\|x\\|_{2}^{2}$ Logistic regression $\log \left(1+e^{-b_{i} t}\right) \quad \frac{\mu}{2}\\|x\\|_{2}^{2}$	LASSO $\frac{1}{2}\left(t-b_{i}\right)^{2} \quad \mu\\|x\\|_{1}$ Least Squares Regression $\frac{1}{2}\left(t-b_{i}\right)^{2}$ 0						
not L-smooth	Linear systems $\underset{\max \left\{0,1-b_{i} \cdot t\right\}}{1_{\left\{b_{i}\right\}}(t)} \text { SVM }^{\frac{1}{2}\left\\|x-x^{0}\right\\|_{B}^{2}} \underset{\frac{\mu}{2}\\|x\\|_{2}^{2}}{ }$	L1-SVM $\max \left\{0,1-b_{i} \cdot t\right\} \quad \mu\\|x\\|_{1}$ L1 regression $\left\|t-b_{i}\right\|$ 0						

4 Interesting Classes of ERM Problems Based on Dimensions

Example: Solving Linear Systems

Solving Linear Systems

$x \in \mathbb{R}^{d}$

Solve $A x=b$

$$
A=\left(\begin{array}{c}
a_{1}^{\top} \\
a_{2}^{\top} \\
\vdots \\
a_{n}^{\top}
\end{array}\right)
$$

$A \in \mathbb{R}^{n \times d}$
 $b \in \mathbb{R}^{n}$

Think: $n \gg d$

Interesting Cases

f_{i}, g convex

Linear Systems (Best Approximation Version) as a Primal ERM Problem

$$
g(x)=\frac{1}{2}\left\|x-x^{0}\right\|_{B}^{2}
$$

$$
\min _{x \in \mathbb{R}^{d}}\left[P(x) \stackrel{\text { def }}{=} \frac{1}{n} \sum_{i=1}^{n} f_{i}\left(a_{i}^{\top} x\right)+g(x)\right]
$$

$$
f_{i}(t)=1_{\left\{b_{i}\right\}}(t) \stackrel{\text { def }}{=} \begin{cases}0 & \text { for } t=b_{i} \\ +\infty & \text { otherwise }\end{cases}
$$

Primal Problem: Best Approximation

$$
\min _{x \in \mathbb{R}^{d}} \frac{1}{2}\left\|x-x^{0}\right\|_{B}^{2} \quad\|x\|_{B}=\sqrt{x^{\top} B x}
$$

Subject to $A x=b$

$$
\{x: A x=b\}
$$

Dual Problem

Recall convex conjugate:

$$
f^{*}(z) \stackrel{\text { def }}{=} \sup _{x \in \mathbb{R} d}^{=}\{\langle z, x\rangle-f(x)\}
$$

$$
\begin{array}{ll}
f_{i}(t)=1_{\left\{b_{i}\right\}}(t) & f_{i}^{*}(t)=b_{i} t \\
g(x)=\frac{1}{2}\left\|x-x^{0}\right\|_{B}^{2} & g^{*}(x)=\left\langle x^{0}, x\right\rangle+\frac{1}{2}\|x\|_{B^{-1}}^{2}
\end{array}
$$

$$
\max _{y \in \mathbb{R}^{n}}\left[D(y) \stackrel{\text { def }}{=}\left\langle b-A x^{0}, \frac{y}{n}\right\rangle-\frac{1}{2}\left\|A^{\top} \frac{y}{n}\right\|_{B^{-1}}^{2}\right]
$$

Unconstrained (non-strongly) concave quadratic maximization

Recovering Primal Solution from Dual Solution

Recall:

$$
x^{*}=\nabla g^{*}\left(\frac{1}{n} A^{\top} y^{*}\right)
$$

$$
g^{*}(x)=\left\langle x^{0}, x\right\rangle+\frac{1}{2}\|x\|_{B^{-1}}^{2}
$$

$$
\nabla g^{*}(x)=x^{0}+B^{-1} x
$$

$$
x^{*}=x^{0}+\frac{1}{n} B^{-1} A^{\top} y^{*}
$$

Further Reading on Randomized Methods for Linear Systems

Primal View:

Robert M. Gower and P.R.
Randomized Iterative Methods for Linear Systems
SIAM J. on Matrix Analysis and Applications 36(4), 1660-1690, 2015

Dual View:

Robert M. Gower and P.R.
Stochastic Dual Ascent for Solving Linear Systems
arXiv:1512.06890, 2015

Inverting Matrices \& Connection to Quasi-Newton Methods:

Robert M. Gower and P.R.
Randomized Quasi-Newton Updates are Linearly Convergent Matrix Inversion Algorithms
arXiv:1602.01768, 2016

Part 2 Standard Algorithmic Toolbox

Optimization with Big Data

= Extreme* Mountain Climbing

* in a billion dimensional space on a foggy day

God's Algorithm = Teleportation

Mortals Have to Walk...

Algorithmic Tools

1. Gradient descent
2. Handling non-smoothness via the proximal trick
3. Acceleration
4. Randomized decomposition
5. Parallelism / mini-batching

More tools:

- Variance reduction
- Importance sampling
- Asynchrony
- Curvature
- Line search

Brief, Biased and Severely Incomplete History of Big Data Optimization

"Randomization helps!"
(Strohmer \& Vershynin, Leventhal \& Lewis, ShalevShwartz \& Tewari, Nesterov, R. \& Takáč)
"Duality \& randomization combined" (Shalev-Shwartz \& Zhang)
"Parallelism, randomization \& nonsmoothness combined"
(R. \& Takáč)

Tool 1

Gradient Descent (1847)

"Just follow a ball rolling down the hill"

Augustin Cauchy
Méthode générale pour la résolution des systèmes d'équations simultanées, pp. 536-538, 1847

The Problem

$\min f(x)$ $x \in \mathbb{R}^{d}$

L-smooth, μ-strongly convex

$$
f(x)+\langle\nabla f(x), y-x\rangle+\frac{\mu}{2}\|y-x\|^{2} \leq f(y) \leq f(x)+\langle\nabla f(x), y-x\rangle+\frac{L}{2}\|y-x\|^{2}
$$

Gradient Descent (GD)

$$
x^{t+1}=x^{t}-\frac{1}{L} \nabla f\left(x^{t}\right)
$$

Tool 2

Acceleration (1983/2003)

"Gradient descent can be made much faster!"

Accelerated Gradient Descent (AGD)

Gradient step: $\quad y^{t+1}=x^{t}-\frac{1}{L} \nabla f\left(x^{t}\right) \quad \alpha=\frac{\sqrt{L / \mu}-1}{\sqrt{L / \mu}+1}$
Extrapolation: $x^{t+1}=(1+\alpha) y^{t+1}-\alpha y^{t}$

Acceleration Works

 (Somewhat Mysteriously)
\# gradient evaluations

Acceleration and ODEs

ODE for Gradient Descent

$$
\dot{X}(t)+\nabla f(X(t))=0
$$

ODE for Accelerated Gradient Descent

$$
\ddot{X}(t)+\frac{3}{t} \dot{X}(t)+\nabla f(X(t))=0
$$

Weijie Su, Stephen Boyd and Emmanuel J. Candes
A Differential Equation for Modeling Nesterov's Accelerated Gradient Method: Theory and Insights

Acceleration

- Reignited interest in gradient methods
- Called momentum in deep neural networks literature
- Oscillation can be tamed (e.g., by restarting)
- Approaches:
- Early work [Nesterov, 1983, 2003, 2005]
- ODEs [Su-Boyd-Candes, 2014]
- Geometry/ellipsoid method [Bubeck-Lee-Singh, 2014]
- Linear coupling [AllenZhu-Orecchia, 2014]
- Katalyst [Mairal-Zarchaoui, 2015]
- Optimal averaging [Scieur-D'Aspremont-Bach, 2016]

Tool 3

Proximal Trick (2004) "Some nonsmooth problems are as easy as smooth problems"

The Problem

$\min _{x \in \mathbb{R}^{d}} f(x)+g(x)$

L-smooth, convex

Convex, but can be nonsmooth

Truss Topology Design

P.R. and Martin Takáč. Efficient Serial and Parallel Coordinate Descent Methods for Huge-Scale Truss Topology Design. Operations Research Proceedings, pp 27-32, 2012

Truss Topology Design: "LASSO" Problem

Image Deblurring

Image Deblurring: "LASSO" Problem

blurred image

$\min _{x \in \mathbb{R}^{d}} \frac{1}{2}\|A x-b\|_{2}^{2}+\lambda\|x\|_{1}$

\# pixels in the image

Blurring matrix multiplied by a wavelet basis matrix

Encourages sparsity in the wavelet basis

Image Segmentation

Alina Ene and Huy L. Nguyen. Random Coordinate Descent Methods for Minimizing Decomposable Submodular Functions. ICML 2015

Olivier Fercoq and P.R. Accelerated, Parallel and Proximal Coordinate
Descent. SIAM Journal on Optimization 25(4), 1997-2023, 2015

Image Segmentation: (Reformulated) Submodular Optimization

subject to $\quad x_{i} \in P_{i}, i=1,2, \ldots, d$

Image Segmentation: (Reformulated) Submodular Optimization

minimize

$$
\frac{1}{2}\left\|\sum_{i=1}^{d} x_{i}\right\|^{2}
$$

$$
x_{i} \in P_{i}, i=1,2, \ldots, d
$$

$$
\min _{x \in \mathbb{R}^{d}} f(x)+g(x)
$$

subject to

$$
f(x)=\frac{1}{2}\left\|\sum_{i=1}^{d} x_{i}\right\|^{2}
$$

$$
g(x)=1_{P_{1} \cap P_{2} \cap \cdots \cap P_{d}}(x)=\sum_{i=1}^{d} 1_{P_{i}}(x)= \begin{cases}0 & x \in P_{1} \cap P_{2} \cap \cdots \cap P_{d} \\ +\infty & \text { otherwise }\end{cases}
$$

Proximal Gradient Descent (PGD)

STEP 1: Pretend there is no regularizer

$$
z^{t+1}=x^{t}-\frac{1}{L} \nabla f\left(x^{t}\right)
$$

STEP 2: Take a "proximal" step with respect to g

$$
x^{t+1}=\arg \min _{x \in \mathbb{R}^{d}} \frac{1}{2}\left\|x-z^{t+1}\right\|_{2}^{2}+\frac{1}{L} g(x)
$$

- Gradient Descent is a special case for $g=0$
- Even though this is a nonsmooth problem, $\frac{L}{\mu} \log (1 / \epsilon)$ \# steps is the same as for Gradient Descent!
- Efficient if Step 2 is easy to do

Example: Projected Gradient Descent

$$
\min _{x \in Q} f(x) \Leftrightarrow \min _{x} f(x)+g(x)
$$

Convex set

$$
g(x)=1_{Q}(x) \stackrel{\text { def }}{=} \begin{cases}0 & x \in Q \\ +\infty & x \notin Q\end{cases}
$$

$$
x^{t+1}=\arg \min _{x \in \mathbb{R}^{d}} \frac{1}{2}\left\|x-z^{t+1}\right\|_{2}^{2}+\frac{1}{L} g(x)
$$

Tool 4

Randomized

 Decomposition"Doing many simple decisions is better than doing a few smart ones"

Why Randomize?

Decomposition Principles

$\min _{x \in Q} f(x)$

Decompose f
Decompose Q
additive: $f=\sum_{i} f_{i}$

Example:
Stochastic Gradient Descent

additive: $Q=\mathbb{R}^{d}=\bigoplus_{i=1}^{s} Q_{i}$
Example:
Randomized Coordinate Descent
multiplicative: $Q=\bigcap_{i=1}^{s} Q_{i}$

```
Example:
Stochastic Projection Method
```


Primal ERM Problem: Stochastic Gradient Descent

H. Robbins and S. Monro

A Stochastic Approximation Method
Annals of Mathematical Statistics 22, pp. 400-407, 1951

The Problem

n is big

$$
\min _{x \in \mathbb{R}^{4}}\left\{f(x)=\frac{1}{n} \sum_{i=1}^{n} f_{i}(x)\right\}
$$

Stochastic Gradient Descent (SGD)

$$
\min _{x \in \mathbb{R}^{d}}\left\{f(x)=\frac{1}{n} \sum_{i=1}^{n} f_{i}(x)\right\}
$$

$$
x^{t+1}=x^{t}-h^{t} \nabla f_{i}\left(x^{t}\right)
$$

$$
\mathbf{E}\left[\nabla f_{i}(x)\right]=\nabla f(x)
$$

$$
\begin{gathered}
i=\text { chosen uniformly } \\
\text { at random }
\end{gathered}
$$

Unbiased estimate of the gradient

1 iteration of SGD is n times cheaper than 1 iteration of GD !

Stochastic Gradient Descent vs Gradient Descent

\# gradient evaluations

Dual ERM Problem: Randomized Coordinate Descent

Yurii Nesterov
Efficiency of Coordinate Descent Methods on Huge-Scale Optimization Problems
SIAM Journal on Optimization, 22(2), 341-362, 2012

P.R. and Martin Takáč

Iteration Complexity of Randomized Block Coordinate Descent Methods for Minimizing a Composite Function
Mathematical Programming 144(2), 1-38, 2014 (arXiv:1107.2848)

How to Handle Big Dimensions?

Primal ERM:

What if d is big?

Dual ERM:
$\max _{y \in \mathbb{R}}\left[D(y) \stackrel{\text { def }}{=}-\frac{1}{n} \sum_{i=1}^{n} f_{i}^{*}\left(-y_{i}\right)-g^{*}\left(\frac{1}{n} A^{\top} y\right)\right]$

Solution:
Decompose the dimension!

The Problem

L-smooth, μ-strongly convex

Randomized Coordinate Descent in 2D

Randomized Coordinate Descent in 2D

Randomized Coordinate Descent in 2D

Randomized Coordinate Descent in 2D

Randomized Coordinate Descent in 2D

Randomized Coordinate Descent in 2D

Randomized Coordinate Descent in 2D

Randomized Coordinate Descent in 2D

Randomized Coordinate Descent

f is L_{i}-smooth along e_{i} :
$\left|\nabla_{i} f\left(x+t e_{i}\right)-\nabla_{i} f(x)\right| \leq L_{i}|t|$
Often, each iteration is n times cheaper. However, complexity is not n times worse! So, RCD is better than GD!
$t \geq\left(\frac{\max _{i} L_{i}}{\mu}\right) \log \left(\frac{C}{\epsilon}\right)$

$$
\mathbf{E}\left[f\left(x^{t}\right)-f\left(x^{*}\right)\right] \leq \epsilon
$$

SGD vs GD vs RCD

\# gradient evaluations

LASSO: 1 Billion Rows \& 100 Million Variables

source: [R. \& Takáč, arXiv 2011, MAPR 2014]

$A \in \mathbf{R}^{10^{9} \times 10^{8}}$

t / n	error	\# nonzeros in x_{k}	time $[\mathrm{s}]$
0.01	$<10^{18}$	18,486	1.32
9.35	$<10^{14}$	$99,837,255$	1294.72
11.97	$<10^{13}$	$99,567,891$	1657.32
14.78	$<10^{12}$	$98,630,735$	2045.53
17.12	$<10^{11}$	$96,305,090$	2370.07
20.09	$<10^{10}$	$86,242,708$	2781.11
22.60	$<10^{9}$	$58,157,883$	3128.49
24.97	$<10^{8}$	$19,926,459$	3455.80
28.62	$<10^{7}$	747,104	3960.96
31.47	$<10^{6}$	266,180	4325.60
34.47	$<10^{5}$	175,981	4693.44
36.84	$<10^{4}$	163,297	5004.24
39.39	$<10^{3}$	160,516	5347.71
41.08	$<10^{2}$	160,138	5577.22
43.88	$<10^{1}$	160,011	5941.72
45.94	$<10^{0}$	160,002	6218.82
46.19	$<10^{-1}$	160,001	6252.20
46.25	$<10^{-2}$	160,000	6260.20
46.89	$<10^{-3}$	160,000	6344.31
46.91	$<10^{-4}$	160,000	6346.99
46.93	$<10^{-5}$	160,000	6349.69

Tool 5

Parallelism / Minibatching

"Work on random subsets"

The Problem

L-smooth, μ-strongly convex

Parallel Randomized Coordinate Descent

Additive Strategy

Additive Strategy

Additive Strategy

Additive Strategy

Additive Strategy

$$
x=\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}, \quad f\left(x_{1}, x_{2}\right)=\left(x_{1}+x_{2}-1\right)^{2}
$$

Averaging Strategy

$$
x=\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}, \quad f\left(x_{1}, x_{2}\right)=\left(x_{1}+x_{2}-1\right)^{2}
$$

Averaging Can Be Bad, Too!

$$
x=\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}, \quad f\left(x_{1}, x_{2}\right)=\left(x_{1}-1\right)^{2}+\left(x_{2}-1\right)^{2}
$$

Actually, Averaging Can Be Very Bad!

How to Combine the Updates?

- We should do datadependent combination of the results obtained in parallel
- There is rich theory for this now

Averaging
(no speedup)

Dense data

Adding
(perfect speedup)

Sparse data

Zheng Qu and P.R.
Coordinate Descent with Arbitrary Sampling II: Expected Separable Overapproximation
Optimization Methods and Software 31(5), 858-884, 2016

Performance

\# gradient evaluations

Problem with 1 Billion Variables

source: [R. \& Takáč, arXiv 2011, MAPR 2014]

	Error $f\left(x^{t}\right)-f\left(x^{*}\right)$		Elapsed Time			
$(t \cdot \tau) / n$	1 core	8 cores	16 cores	1 core	8 cores	16 cores
0	$6.27 \mathrm{e}+22$	$6.27 \mathrm{e}+22$	$6.27 \mathrm{e}+22$	0.00	0.00	0.00
1	$2.24 \mathrm{e}+22$	$2.24 \mathrm{e}+22$	$2.24 \mathrm{e}+22$	0.89	0.11	0.06
2	$2.25 \mathrm{e}+22$	$3.64 \mathrm{e}+19$	$2.24 \mathrm{e}+22$	1.97	0.27	0.14
3	$1.15 \mathrm{e}+20$	$1.94 \mathrm{e}+19$	$1.37 \mathrm{e}+20$	3.20	0.43	0.21
4	$5.25 \mathrm{e}+19$	$1.42 \mathrm{e}+18$	$8.19 \mathrm{e}+19$	4.28	0.58	0.29
5	$1.59 \mathrm{e}+19$	$1.05 \mathrm{e}+17$	$3.37 \mathrm{e}+19$	5.37	0.73	0.37
6	$1.97 \mathrm{e}+18$	$1.17 \mathrm{e}+16$	$1.33 \mathrm{e}+19$	6.64	0.89	0.45
7	$2.40 \mathrm{e}+16$	$3.18 \mathrm{e}+15$	$8.39 \mathrm{e}+17$	7.87	1.04	0.53
\vdots						
26	$3.49 \mathrm{e}+02$	$4.11 \mathrm{e}+01$	$3.68 \mathrm{e}+03$	31.71	3.99	2.02
27	$1.92 \mathrm{e}+02$	$5.70 \mathrm{e}+00$	$7.77 \mathrm{e}+02$	33.00	4.14	2.10
28	$1.07 \mathrm{e}+02$	$2.14 \mathrm{e}+00$	$6.69 \mathrm{e}+02$	34.23	4.30	2.17
29	$6.18 \mathrm{e}+00$	$2.35 \mathrm{e}-01$	$3.64 \mathrm{e}+01$	35.31	4.45	2.25
30	$4.31 \mathrm{e}+00$	$4.03 \mathrm{e}-02$	$2.74 \mathrm{e}+00$	36.60	4.60	2.33
31	$6.17 \mathrm{e}-01$	$3.50 \mathrm{e}-02$	$6.20 \mathrm{e}-01$	37.90	4.75	2.41
32	$1.83 \mathrm{e}-02$	$2.41 \mathrm{e}-03$	$2.34 \mathrm{e}-01$	39.17	4.91	2.48
33	$3.80 \mathrm{e}-03$	$1.63 \mathrm{e}-03$	$1.57 \mathrm{e}-02$	40.39	5.06	2.56
34	$7.28 \mathrm{e}-14$	$7.46 \mathrm{e}-14$	$1.20 \mathrm{e}-02$	41.47	5.21	2.64
35	-	-	$1.23 \mathrm{e}-03$	-	-	2.72
36	-	-	$3.99 \mathrm{e}-04$	-	-	2.80
37	-	-	$7.46 \mathrm{e}-14$	-	-	2.87

Tools 1-5
Summary

Tools 1-5 Summary

Method	\# iterations	Cost of 1 iter.
Gradient Descent (GD)	$\frac{L}{\mu} \log (1 / \epsilon)$	n
Accelerated Gradient Descent (AGD)	$\sqrt{\frac{L}{\mu}} \log (1 / \epsilon)$	n
Proximal Gradient Descent (PGD)	$\frac{L}{\mu} \log (1 / \epsilon)$	$n+$ Prox Step
Stochastic Gradient Descent (SGD)	$\left(\frac{\max _{i} L_{i}}{\mu}+\frac{\sigma^{2}}{\mu^{2} \epsilon}\right) \log (1 / \epsilon)$	1
Randomized Coordinate Descent (RCD)	$\frac{\max _{i} L_{i}}{\mu} \log (1 / \epsilon)$	1

Tool 6

Variance Reduction

"SGD is too noisy, fix it!"

Variance Reduction

	Decreasing stepsizes	Minibatching	Adjusting the direction	Importance sampling
How does it work?	Scaling down the noise	More samples, less variance	(Duality (SDCA) or control Variate (SVRG)	Sample more important data (or parameters) more often
CONS:	Slow down; Hard to tune the stepsize	More work per iteration	A bit (SVRG) or a lot (SDCA) more memory needed	Might overfit probabilities to outliers
PROS:	Still converges Widely known	Parallelizable	Improved dependence on epsilon	Improved condition number for "variable" data

Good news: All tricks can be combined!

Tool 7

Importance Sampling

"Sample important data more often"

The Problem

$\min _{x \in \mathbb{R}^{n}} f(x)$

Smooth and μ-strongly convex

ARBITRARY SAMPLING:

i.i.d. subset of $\{1,2, \ldots, n\}$ with arbitrary distribution

Choose a random set S_{t} of coordinates

For $i \in S_{t}$ do

$$
x_{i}^{t+1} \leftarrow x_{i}^{t}-\frac{1}{v_{i}}\left(\nabla f\left(x^{t}\right)\right)^{\top} e_{i}
$$

For $i \notin S_{t}$ do

$$
x_{i}^{t+1} \leftarrow x_{i}^{t}
$$

$$
\begin{aligned}
& \text { Example } n=3 \\
& e_{1}=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right) \quad e_{2}=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)
\end{aligned}
$$

Key Assumption

Parameters v_{1}, \ldots, v_{n} satisfy:

$$
\begin{array}{r}
\mathbf{E}\left[f\left(x+\sum_{i \in S_{t}} h_{i} e_{i}\right)\right] \leq f(x)+\sum_{i=1}^{n} p_{i} \nabla_{i} f(x) h_{i}+\sum_{i=1}^{n} p_{i} v_{i} h_{i}^{2} \\
\text { Inequality must hold for all } \\
x, h \in \mathbb{R}^{n} \quad p_{i}=\mathbf{P}\left(i \in S_{t}\right)
\end{array}
$$

Complexity Theorem

$$
\begin{gathered}
t \geq\left(\max _{i} \frac{v_{i}}{p_{i} \mu}\right) \log \left(\frac{f\left(x^{0}\right)-f\left(x^{*}\right)}{\epsilon \rho}\right) \\
p_{i}=\mathbf{P}\left(i \in S_{t}\right) \\
\mathbf{P}\left(f\left(x^{t}\right)-f\left(x^{*}\right) \leq \epsilon\right) \geq 1-\rho
\end{gathered}
$$

Uniform vs Optimal Sampling

$$
\begin{array}{ll}
p_{i}=\frac{1}{n} & \quad \max _{i} \frac{v_{i}}{p_{i} \mu}=\frac{n \max _{i} v_{i}}{\mu} \\
p_{i}=\frac{v_{i}}{\sum_{i} v_{i}} & \square \max _{i} \frac{v_{i}}{p_{i} \mu}=\frac{\sum_{i} v_{i}}{\mu}
\end{array}
$$

Logistic Regression:

Zheng Qu, P.R. and Tong Zhang. Quartz: Randomized Dual Coordinate Ascent with Arbitrary Sampling. In Advances in Neural Information Processing Systems 28, 2015

Data $=\operatorname{cov} 1, \quad n=522,911, \quad \lambda=10^{-6}$

More Work on Arbitrary Sampling

Zheng Qu, P.R. and Tong Zhang
Quartz: Randomized dual coordinate ascent with arbitrary sampling In Advances in Neural Information Processing Systems 28, 2015

Zheng Qu and P.R.
Coordinate descent with arbitrary sampling I: algorithms and complexity
Optimization Methods and Software 31(5), 829-857, 2016

PDF
Zheng Qu and P.R.
Coordinate descent with arbitrary sampling II: expected separable overapproximation
Optimization Methods and Software 31(5), 858-884, 2016

Tool 8

Duality

"Solve the dual instead"

3-in1: Three Variance Reduction Strategies in 1 Method

Variance Reduction

	Decreasing stepsizes	Mini- batching	Adjusting the direction	Importance sampling
How does it work?	Scaling down the noise	More samples, less variance	Duality (SDCA) or Control	Sample more (mportant data (SVRG) (or parameters) more often
CONS:	Slow down; Hard to tune the stepsize	More work per iteration	A bit (SVRG) or a lot (SDCA) more memory needed	Might overfit probabilities to outliers
PROS:	Still converges Widely known	Parallelizable	Improved dependence on epsilon	Improved condition number for "variable" data

Good news: All tricks can be combined!

The Problem

$$
\begin{aligned}
& \min _{x \in \mathbb{R}^{d}}\left[P(x) \stackrel{\text { def }}{=} \frac{1}{n} \sum_{i=1}^{n} f_{i}\left(a_{i}^{\top} x\right)+g(x)\right] \\
& \text { Convex and } L \text {-smooth } \quad \frac{\mu}{2}\|x\|_{2}^{2}
\end{aligned}
$$

We will discuss duality without actually considering the dual problem. The basic proof technique (due to Shai Shalev-Shwartz, 2015) is dual-free.

Motivation I

$$
\min _{x \in \mathbb{R}^{d}}\left[P(x) \stackrel{\text { def }}{=} \frac{1}{n} \sum_{i=1}^{n} f_{i}\left(a_{i}^{\top} x\right)+g(x)\right]
$$

x^{*} is optimal

$$
0=\nabla P\left(x^{*}\right)=\left(\frac{1}{n} \sum_{i=1}^{n} a_{i} \nabla f_{i}\left(a_{i}^{\top} x^{*}\right)\right)+\mu x^{*}
$$

$$
x^{*}=\frac{1}{\mu n} \sum_{i=1}^{n} a_{i} y_{i}^{*}
$$

$$
y_{i}^{*}:=-\nabla f_{i}\left(a_{i}^{\top} x^{*}\right)
$$

Motivation II

Algorithmic Ideas:

1) Simultaneously search for both x^{*} and $y_{1}^{*}, \ldots, y_{n}^{*}$
2. Try to do "something like"

$$
y_{i}^{t+1} \leftarrow-\nabla f_{i}\left(a_{i}^{\top} x^{t}\right)
$$

3) Maintain the relationship

Does not quite work: too "greedy"

$$
x^{t}=\frac{1}{\mu n} \sum_{i=1}^{n} a_{i} y_{i}^{t}
$$

The Algorithm: dfSDCA

$$
\begin{aligned}
& \text { STEP 0: INITIALIZE } \\
& \qquad \text { Choose } y_{1}^{0}, \ldots, y_{n}^{0} \in \mathbb{R} \quad x^{0}=\frac{1}{\mu n} \sum_{i=1}^{n} a_{i} y_{i}^{0}
\end{aligned}
$$

STEP 1: "DUAL" UPDATE

Choose a random set S_{t} of "dual variables"

$$
\begin{gathered}
\text { For } i \in S_{t} \text { do } \begin{array}{c}
\begin{array}{c}
\text { Controlling "greed" by taking } \\
\text { a convex combination }
\end{array}
\end{array} \quad \theta=\min _{i} \frac{p_{i} n}{v_{i} \kappa+n} \\
y_{i}^{t+1} \leftarrow\left(1-\frac{\theta}{p_{i}}\right) y_{i}^{t}+\frac{\theta}{p_{i}}\left(-\nabla f_{i}\left(a_{i}^{\top} x^{t}\right)\right)
\end{gathered}
$$

Complexity

Theorem [Csiba \& R '15]

$$
\begin{aligned}
t \geq & \max _{i}\left(\frac{1}{p_{i}}+\frac{v_{i} \kappa}{p_{i} n}\right) \log \left(\frac{C}{\epsilon}\right) \\
p_{i}= & \mathbf{P}\left(i \in S_{t}\right) \\
& \mathbf{E}\left[P\left(x^{t}\right)-P\left(x^{*}\right)\right] \leq \epsilon
\end{aligned}
$$

Relevant Papers

Shai Shalev-Shwartz

Dual-free SDCA idea

 SDCA without dualityarXiv:1502.06177, 2015
Dominik Csiba and P.R.
Primal method for ERM with flexible mini-batching schemes and
non-convex losses
$\operatorname{arXiv:1506.02227,2015}$

Zheng Qu and P.R.
Same theoretical result, but for general g and using duality

Coordinate descent with arbitrary sampling II: expected separable overapproximation
Adobe
Optimization Methods and Software 31(5), 858-884, 2016

Standard Tools: Final Remarks

Methods Tools	$\begin{gathered} \text { GD } \\ 1847 \end{gathered}$	$\begin{aligned} & \text { AGD } \\ & ‘ 83 \text { '03 } \end{aligned}$	$\begin{gathered} \text { PGD } \\ \text { '05 } \end{gathered}$	$\begin{gathered} \text { SGD } \\ \text { '51 } \end{gathered}$	$\begin{gathered} \text { RCD } \\ \text { '10 } \end{gathered}$	$\begin{gathered} \text { PCDM } \\ \text { '12 } \end{gathered}$	$\begin{gathered} \text { SDCA } \\ \text { '12 } \end{gathered}$	$\begin{gathered} \text { SVRG } \\ \text { '14 } \end{gathered}$
1.Gradient Descent	YES							
2. Acceleration	NO	YES	NO	$\begin{gathered} \text { NO } \\ \text { Katyusha } 17 \end{gathered}$	$\underset{\substack{\text { APPROX } \\ \text { ALPHA } 13 \\ \text { Al }}}{ }$	NO	NO AccProx-SDCA ' 13 APCG '14	NO
3. Proximal Trick	$\begin{aligned} & \text { NO } \\ & \text { PGM }{ }^{\circ} 05 \end{aligned}$	NO	YES	NO		$\begin{aligned} & \text { NO* } \\ & \text { РСDМ }{ }^{\prime 12} \end{aligned}$	YES	$\underset{\text { ProxVVGG } 14}{\text { NO }}$
4. Randomized Decomposition	NO	NO	NO	YES	YES	YES	YES	YES
5. Parallelism (Minibatching)	YES	YES	YES*	$\underset{\text { m } 566^{113}}{\text { NO }}$	NO ${ }^{\text {PCOM } 121}$ ALPHA 14	YES	$\begin{gathered} \text { NO } \\ \text { Quart' } 15 \end{gathered}$	$\underset{\text { m } 226 D^{\prime 14}}{\text { NO }}$
6. Variance Reduction		x	x	NO SAG '11 SVRG '13 S2GD '13 SDCA '12	YES	YES	YES	YES
7. Duality	NO	NO	YES	YES	$\underset{\text { RCDC } 11}{ }$	$\begin{gathered} \text { NO } \\ \text { PCDM '12 } \end{gathered}$	YES	NO
8. Importance Sampling	x	x		$\underset{\text { Iprox-SMD } 13}{\text { NO }}$	YES NSync '13 RCDC '11 ALPHA 14	NO ALPHA '14	NO QUARTZ '15	NO
9. Curvature	NO	NO	NO	NO	$\begin{gathered} \text { NO } \\ \text { SDNA'15 } \end{gathered}$	NO SDNA '15	NO SDNA '15	$\begin{gathered} \text { NO } \\ \text { SBFGS'15 } \end{gathered}$

Tools Methods	NSync 13	dfSDCA 115
1.Gradient Descent	YES	YES
2. Acceleration	NO	NO
3. Proximal Trick	NO	NO
4. Randomized Decomposition	YES	YES
5. Parallelism (Minibatching)	YES	YES
6. Variance Reduction	YES	YES
7. Duality	NO	NO*
8. Importance	YES	YES
Sampling	NO	NO
9. Curvature	NO	

Accelerating stochastic gradient descent using predictive variance reduction
S2GD
ProxSVRG

Advances in neural information processing systems, 315-323
Semi-stochastic gradient descent methods
J Konečný, P Richtárik
Frontiers in Applied Mathematics and Statistics
A proximal stochastic gradient method with progressive variance reduction
L Xiao, T Zhang 213 2014
SIAM Journal on Optimization 24 (4), 2057-2075
mSGD

Mini-batch primal and dual methods for SVMs
M Takáč, A Bijral, P Richtárik, N Srebro
30th International Conference on Machine Learning (ICML)
Quartz: Randomized dual coordinate ascent with arbitrary sampling
QUARTZ
Z Qu, P Richtárik, T Zhang
$67 \quad 2015$
Advances in Neural Information Processing Systems 28, 865--873

SAG
Minimizing finite sums with the stochastic average gradient M Schmidt, N Le Roux, F Bach
Mathematical Programming (MAPR), 2017.
Coordinate descent with arbitrary sampling I: algorithms and complexity
ALPHA
Z Qu, P Richtárik
Optimization Methods and Software 31 (5), 829-857
NSync

On optimal probabilities in stochastic coordinate descent methods
NSync
PRichtárik, M Takáč
Optimization Letters 10 (6), 1233-1243
Stochastic Primal-Dual Coordinate Method for Regularized Empirical Risk
SPDC
Minimization.
Y Zhang, L Xiao
ICML, 353 - 361

GD, AGD	Introductory lectures on convex optimization: A basic course Y Nesterov Springer Science \& Business Media	2564	2013
AGD	Smooth minimization of non-smooth functions Y Nesterov Mathematical programming 103 (1), 127-152	1686	2005
PGD	Gradient methods for minimizing composite objective function Y Nesterov Core	1288 *	2007
RCD	Efficiency of coordinate descent methods on huge-scale optimization problems Y Nesterov SIAM Journal on Optimization 22 (2), 341-362	581	2012
SBFGS	Stochastic block BFGS: squeezing more curvature out of data RM Gower, D Goldfarb, P Richtárik 33rd International Conference on Machine Learning (ICML)	25	2016
APCG	An accelerated proximal coordinate gradient method Q Lin, Z Lu, L Xiao Advances in Neural Information Processing Systems, 3059-3067	74	2014
Acc Prox-SDCA	Accelerated proximal stochastic dual coordinate ascent for regularized loss minimization S Shalev-Shwartz, T Zhang International Conference on Machine Learning, 64-72	135	2014
mS2GD	Mini-batch semi-stochastic gradient descent in the proximal setting J Konečný, J Liu, P Richtárik, M Takáč IEEE Journal of Selected Topics in Signal Processing 10 (2), 242-255	68	2015

Part 3
 Stochastic Methods for Linear Systems

The Plan

Plan

- Quick recall of ERM formulation of linear systems
- Four stochastic reformulations (not related to ERM)
- Basic method (solves primal ERM)
- Parallel and accelerated methods (solve primal ERM)
- Duality (method for solving dual ERM)
- EXTRA TOPIC: Special cases (specializing some parameters of the method)
- EXTRA TOPIC: Stochastic preconditioning (vast generalization of importance sampling)
- EXTRA TOPIC: Stochastic matrix inversion

P.R. and Martin Takáč

We will (mostly) follow this paper
Stochastic Reformulations of Linear Systems: Algorithms and
Convergence Theory
arXiv:1706.01108, 2017

Algorithms

Basic Method

- Stochastic gradient descent
- Stochastic Newton method
- Stochastic proximal point method
- Stochastic preconditioning method
- Stochastic fixed point method
- Stochastic projection method

Dual of the Basic Method

- Stochastic dual subspace ascent

Selected Special Cases (Basic Method)

- Randomized Kaczmarz Method
- Stochastic coordinate descent
- Randomized Newton method
- Stochastic Gaussian descent
- Stochastic spectral descent

Quick Recall:

 Linear Systems as ERM
Solving Linear Systems

$x \in \mathbb{R}^{d}$

Solve $A x=b$

$$
A=\left(\begin{array}{c}
a_{1}^{\top} \\
a_{2}^{\top} \\
\vdots \\
a_{n}^{\top}
\end{array}\right)
$$

$A \in \mathbb{R}^{n \times d}$
 $b \in \mathbb{R}^{n}$

Think: $n \gg d$

Linear Systems (Best Approximation Version) as a Primal ERM Problem

$$
g(x)=\frac{1}{2}\left\|x-x^{0}\right\|_{B}^{2}
$$

$$
\min _{x \in \mathbb{R}^{d}}\left[P(x) \stackrel{\text { def }}{=} \frac{1}{n} \sum_{i=1}^{n} f_{i}\left(a_{i}^{\top} x\right)+g(x)\right]
$$

$$
f_{i}(t)=1_{\left\{b_{i}\right\}}(t) \stackrel{\text { def }}{=} \begin{cases}0 & \text { for } t=b_{i} \\ +\infty & \text { otherwise }\end{cases}
$$

Primal Problem: Best Approximation

$$
\min _{x \in \mathbb{R}^{d}} \frac{1}{2}\left\|x-x^{0}\right\|_{B}^{2} \quad\|x\|_{B}=\sqrt{x^{\top} B x}
$$

Subject to $A x=b$

$$
\{x: A x=b\}
$$

Dual Problem

Recall convex conjugate:

$$
f^{*}(z) \stackrel{\text { def }}{=} \sup _{x \in \mathbb{R} d}^{=}\{\langle z, x\rangle-f(x)\}
$$

$$
\begin{array}{ll}
f_{i}(t)=1_{\left\{b_{i}\right\}}(t) & f_{i}^{*}(t)=b_{i} t \\
g(x)=\frac{1}{2}\left\|x-x^{0}\right\|_{B}^{2} & g^{*}(x)=\left\langle x^{0}, x\right\rangle+\frac{1}{2}\|x\|_{B^{-1}}^{2}
\end{array}
$$

$$
\max _{y \in \mathbb{R}^{n}}\left[D(y) \stackrel{\text { def }}{=}\left\langle b-A x^{0}, \frac{y}{n}\right\rangle-\frac{1}{2}\left\|A^{\top} \frac{y}{n}\right\|_{B^{-1}}^{2}\right]
$$

Unconstrained (non-strongly) concave quadratic maximization

Recovering Primal Solution from Dual Solution

Recall:

$$
x^{*}=\nabla g^{*}\left(\frac{1}{n} A^{\top} y^{*}\right)
$$

$$
g^{*}(x)=\left\langle x^{0}, x\right\rangle+\frac{1}{2}\|x\|_{B^{-1}}^{2}
$$

$$
\nabla g^{*}(x)=x^{0}+B^{-1} x
$$

$$
x^{*}=x^{0}+\frac{1}{n} B^{-1} A^{\top} y^{*}
$$

Reformulation 1: Stochastic Optimization

Change of Notation

A System of Linear Equations

m equations with n unknowns

Assumption: The system is consistent (i.e., a solution exists)

Stochastic Reformulations of Linear Systems

$n \times n$ pos def
 B, \mathcal{D}
 $A x=b$

distribution over $m \times q$ matrices

1. Stochastic Optimization
2. Stochastic Linear System
3. Stochastic Fixed Point
4. Probabilistic Intersection

Example: $B=$ identity

$$
\mathcal{D}=\text { uniform over } e_{1}, \ldots, e_{m}\left(\text { unit basis vectors in } \mathbb{R}^{m}\right)
$$

Theorem
a) These 4 problems have the same solution sets
b) Weak necessary \& sufficient conditions for the solution set to be equal to $\{x: A x=b\}$

Reformulation 1: Stochastic Optimization

Stochastic Optimization

Stochastic function

(unbiased estimator of function f)

Minimize $f(x) \stackrel{\text { def }}{=} \mathbf{E}_{S \sim \mathcal{D}}\left[f_{S}(x)\right]$

$$
f_{S}(x)=\frac{1}{2}\left\|x-\Pi_{\mathcal{L}_{S}}^{B}(x)\right\|_{B}^{2}=\frac{1}{2}(A x-b)^{\top} H_{S}(A x-b)
$$

$$
\mathcal{L}_{S}=\left\{x: S^{\top} A x=S^{\top} b\right\}
$$

$$
H_{S} \stackrel{\text { def }}{=} S\left(S^{\top} A B^{-1} A^{\top} S\right)^{\dagger} S^{\top}
$$

Sketched system

Special Case

\mathcal{D} is defined by: $S=e_{i}$ with probability $1 / m$
$B=I \quad$ (identity matrix)

$$
m=3 \quad \Rightarrow \quad e_{1}=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right), \quad e_{2}=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right), \quad e_{3}=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)
$$

Expectation becomes average over m functions:
Minimize $\quad f(x):=\frac{1}{m} \sum_{i=1}^{m} \underbrace{\frac{1}{\left\|A_{: i}\right\|^{2}}\left(A_{: i} x-b_{i}\right)^{2}}_{f_{i}(x)}$

Special Case: Randomized Algorithm

Algorithm (Stochastic Gradient Descent)

$$
\text { 1. Choose random } i \in\{1,2, \ldots, m\}
$$

2. $x^{t+1}=x^{t}-\nabla f_{i}\left(x^{t}\right)$

Stochastic gradient (unbiased estimator of the gradient):

$$
\mathbf{E}\left[\nabla f_{i}(x)\right]=\nabla f(x)
$$

Reformulation 2: Stochastic Linear System

Stochastic Linear System

$$
\begin{aligned}
& \text { Instead of } A x=b \text { we solve } \quad H_{S} \stackrel{\text { def }}{=} S\left(S^{\top} A B^{-1} A^{\top} S\right)^{\dagger} S^{\top} \\
& \text { the preconditioned system: }
\end{aligned}
$$

Solve $B^{-1} A^{\top} \mathbf{E}_{S \sim \mathcal{D}}\left[H_{S}\right] A x=B^{-1} A^{\top} \mathbf{E}_{S \sim \mathcal{D}}\left[H_{S}\right] b$

Preconditioner P

Special Case

$$
\mathcal{D} \text { is defined by: } S=e_{i} \text { with probability } 1 / m
$$

$$
B=I \quad \text { (identity matrix) }
$$

Solve $P A x=P b$

$$
P:=\frac{1}{m} \sum_{i=1}^{m} \underbrace{A^{\top} \frac{e_{i} e_{i}^{\top}}{\left\|A_{i:}\right\|^{2}}}_{P_{i}}
$$

Special Case: Algorithm

Algorithm (Stochastic Preconditioning Method)

1. Choose random $i \in\{1,2, \ldots, m\}$
2. $x^{t+1}=\arg \min _{x \in \mathbb{R}^{n}}\left\{\left\|x-x^{t}\right\|: P_{i} A x=P_{i} b\right\}$

See also: Sketch \& Project Method [Gower \& Richtarik, 2015]

Stochastic preconditioner (unbiased estimator of the preconditioner P)

$$
\mathbf{E}\left[P_{i}\right]=P
$$

Reformulation 3: Stochastic Fixed Point Problem

Stochastic Fixed Point Problem

$$
\text { Solve } x=\underbrace{\mathbf{E}_{S \sim \mathcal{D}}\left[\Pi_{\mathcal{L}_{S}}^{B}(x)\right]}_{\phi(x)}
$$

Projection in B-norm onto $\mathcal{L}_{S}=\left\{x: S^{\top} A x=S^{\top} b\right\}$

Special Case

\mathcal{D} is defined by: $S=e_{i}$ with probability $1 / m$ $B=I \quad$ (identity matrix)

Solve $x=\phi(x)$

$$
\phi(x):=x-P(A x-b)=\frac{1}{m} \sum_{i=1}^{m} \underbrace{x-P_{i}(A x-b)}_{\phi_{i}(x)}
$$

Special Case: Algorithm

Algorithm (Stochastic Fixed Point Method)

$$
\begin{aligned}
& \text { 1. Choose random } i \in\{1,2, \ldots, m\} \\
& \text { 2. } x^{t+1}=\phi_{i}\left(x^{t}\right)
\end{aligned}
$$

Stochastic operator (unbiased estimator of the fixed point operator)

$$
\mathbf{E}\left[\phi_{i}(x)\right]=\phi(x)
$$

Reformulation 4:
 Stochastic Intersection Problem

Stochastic Intersection of Sets

"Sketched" system: $\quad S^{\top} A x=S^{\top} b \quad S \sim \mathcal{D}$
Stochastic set: $\quad \mathcal{L}_{S}=\left\{x: S^{\top} A x=S^{\top} b\right\}$

Definition

Stochastic intersection of the sets $\left\{\mathcal{L}_{S}\right\}_{S \sim \mathcal{D}}$ is the set

$$
\bigcap_{S \sim \mathcal{D}} \mathcal{L}_{S} \stackrel{\text { def }}{=}\left\{x: \mathbf{P}\left(x \in \mathcal{L}_{S}\right)=1\right\}
$$

Discrete Case: Stochastic Intersection = Classical Intersection

$$
\begin{aligned}
& \mathcal{D} \text { is discrete: } \\
& S=S_{i} \text { with probability } p_{i}>0 \\
& \left\{x: \mathbf{P}\left(x \in \mathcal{L}_{S}\right)=1\right\}=\bigcap_{i} \mathcal{L}_{S_{i}}
\end{aligned}
$$

Stochastic intersection of sets
"Classical" intersection of sets

Indicator Function of a Set

$$
1_{\mathcal{M}}(x)= \begin{cases}0 & x \in \mathcal{M} \\ +\infty & \text { otherwise }\end{cases}
$$

Indicator function of the stochastic set:

$$
1_{\mathcal{L}_{S}}(x)= \begin{cases}0 & x \in \mathcal{L}_{S} \\ +\infty & \text { otherwise }\end{cases}
$$

Stochastic Intersection

$$
1_{\mathcal{L}_{S}}(x)=\left\{\begin{array}{l}
0 \\
+\infty
\end{array}\right.
$$

Lemma

$\mathbf{E}_{S \sim \mathcal{D}}\left[1_{\mathcal{L}_{S}}(x)\right]=\left\{\begin{array}{l}0 \\ +\infty\end{array}\right.$
$x \in \mathcal{L}_{S}$
otherwise.

$\mathbf{P}\left(x \in \mathcal{L}_{S}\right)=1$ otherwise.

That is, the expectation of the indicator functions of the stochastic sets is an indicator function of the stochastic intersection those sets:

$$
\mathbf{E}_{S \sim \mathcal{D}}\left[1_{\mathcal{L}_{S}}(x)\right]=1_{\bigcap_{S \sim \mathcal{D}} \mathcal{L}_{S}}(x)
$$

Stochastic Intersection Problem

Stochastic set:

$$
\mathcal{L}_{S}=\left\{x: S^{\top} A x=S^{\top} b\right\}
$$

Find $x \in \bigcap_{S \sim \mathcal{D}} \mathcal{L}_{S}$

Lemma Under some weak assumptions (e.g., $\mathbf{E}\left[H_{S}\right] \succ 0$ is sufficient)

$$
\mathcal{L}=\bigcap_{S \sim \mathcal{D}} \mathcal{L}_{S}
$$

Solution set of the linear system:
$\mathcal{L} \stackrel{\text { def }}{=}\{x: A x=b\}$

Special Case

\mathcal{D} is defined by: $S=e_{i}$ with probability $1 / m$
$B=I \quad$ (identity matrix)

Special Case: Algorithm

Algorithm (Stochastic Projection Method)

1. Choose random $i \in\{1,2, \ldots, m\}$
2. $x^{t+1}=\Pi_{\mathcal{L}_{i}}\left(x^{t}\right)$

T. Strohmer and R. Vershynin. A Randomized Kaczmarz Algorithm with Exponential Convergence. Journal of Fourier Analysis and Applications 15(2), pp. 262-278, 2009

Summary

Deterministic concept	Decomposition	Stochastic estimate
Function f	$f(x)=\frac{1}{m} \sum_{i=1}^{m} f_{i}(x)$	Stochastic function $f_{i}(x)$
Gradient $\nabla f(x)$	$\nabla f(x)=\frac{1}{m} \sum_{i=1}^{m} \nabla f_{i}(x)$	Stochastic gradient $\nabla f_{i}(x)$
Hessian $\nabla^{2} f(x)$	$\nabla^{2} f(x)=\frac{1}{m} \sum_{i=1}^{m} \nabla^{2} f_{i}(x)$	Stochastic Hessian $\nabla^{2} f_{i}(x)$
Preconditioned system	$P=\frac{1}{m} \sum_{i=1}^{m} P_{i}$	Stochastic system $P_{i} A x=P_{i} b$
$P A x=P b$	$P=\frac{1}{m} \sum_{i=1}^{m} P_{i}$	Stochastic preconditioner P_{i}
Preconditioner P	$\phi(x)=\frac{1}{m} \sum_{i=1}^{m} \phi_{i}(x)$	Stochastic operator $\phi_{i}(x)$
Operator $\phi(x)$	$\mathcal{L}=\bigcap_{i=1}^{m} \mathcal{L}_{i}$	Stochastic set \mathcal{L}_{i}
Set \mathcal{L}		

Stochastic Reformulations

Reformulation	Key concepts	Algorithm (special case)		
Stochastic optimization problem $\text { Minimize } \frac{1}{m} \sum_{i=1}^{m} f_{i}(x)$	stochastic function stochastic gradient stochastic Hessian	Stochastic gradient descent $x^{t+1}=x^{t}-\nabla f_{i}\left(x^{t}\right)$		
Stochastic linear system Solve $\left(\frac{1}{m} \sum_{i=1}^{m} P_{i}\right) A x=\left(\frac{1}{m} \sum_{i=1}^{m} P_{i}\right) b$	stochastic system stochastic precondition.	Stochastic precond. method $x^{t+1}=\arg \min _{x: P_{i} A x=P_{i} b}\left\\|x-x^{t}\right\\|$		
Stochastic fixed point problem Solve $\quad x=\frac{1}{m} \sum_{i=1}^{m} \phi_{i}(x)$	stochastic operator	Stochastic fixed point method $x^{t+1}=\phi_{i}\left(x^{t}\right)$		
Stochastic intersection problem Find $\quad x \in \bigcap_{i=1}^{m} \mathcal{L}_{i}$	stochastic set	Stochastic projection method $x^{t+1}=\Pi_{\mathcal{L}_{i}}\left(x^{t}\right)$		

Basic Method

Methods Beyond the Special Case

We proposed some "natural" methods in the special case:

$$
\begin{aligned}
& \mathcal{D} \text { is defined by: } S=e_{i} \text { with probability } 1 / m \\
& B=I \text { (identity matrix) }
\end{aligned}
$$

We now proceed to the general case:

- General \mathcal{D}
- General B
- Introduction of a stepise $\omega>0$
- more methods: stochastic Newton, stochastic proximal point method

Basic Method

Stochastic Gradient Descent

Stochastic Optimization Problem
Minimize $f(x) \stackrel{\text { def }}{=} \mathbf{E}_{S \sim \mathcal{D}}\left[f_{S}(x)\right]$
a key method in stochastic optimization \& machine learning

stochastic gradient

Stochastic Newton Method

Stochastic Optimization Problem

$$
\operatorname{Minimize} f(x) \stackrel{\text { def }}{=} \mathbf{E}_{S \sim \mathcal{D}}\left[f_{S}(x)\right]
$$

$$
S^{t} \sim \mathcal{D}
$$

Stochastic Proximal Point Method

Stochastic Optimization Problem

Minimize $f(x) \stackrel{\text { def }}{=} \mathbf{E}_{S \sim \mathcal{D}}\left[f_{S}(x)\right]$

$$
S^{t} \sim \mathcal{D}
$$

$$
x^{t+1}=\arg \min _{x \in \mathbb{R}^{n}}\left\{f_{S^{t}}(x)+\frac{1-\omega}{2 \omega}\left\|x-x^{t}\right\|_{B}^{2}\right\}
$$

Stochastic function (unbiased estimate of f)

Term encouraging proximity to the last iterate

Stochastic Preconditioning Method

Stochastic Linear System
Solve $P A x=P b$

$$
P=\mathbf{E}_{S \sim \mathcal{D}}\left[B^{-1} A^{\top} H_{S}\right]
$$

$$
S^{t} \sim \mathcal{D}
$$

$$
x^{t+1}=\arg \min _{x: P_{S^{t}} A x=P_{S^{t}} b}\left\|x-x^{t}\right\|_{B}
$$

Stochastic preconditioner
(unbiased estimator of P)

Stochastic Fixed Point Method

Stochastic Fixed Point Problem
Solve $x=\phi(x)$

$$
\phi(x)=\mathbf{E}_{S \sim \mathcal{D}}\left[\phi_{S}(x)\right]
$$

$$
\phi_{S}(x)=\Pi_{\mathcal{L}_{S}}^{B}(x)
$$

Stochastic operator
 (unbiased estimator of the fixed point operator $\phi(x)$)

$$
S^{t} \sim \mathcal{D}
$$

$$
x^{t+1}=\omega \phi_{S^{t}}\left(x^{t}\right)+(1-\omega) x^{t}
$$

Relaxation parameter

Stochastic Projection Method

Stochastic Intersection Problem

$$
\text { Find } x \in \bigcap_{S \sim \mathcal{D}} \mathcal{L}_{S}
$$

Stochastic projection map

$$
x^{t+1}=\omega \Pi_{\mathcal{L}_{S^{t}}}^{B}\left(x^{t}\right)+(1-\omega) x^{t}
$$

Stochastic set

"unbiased" estimator of the set

$$
\bigcap_{S \sim \mathcal{D}} \mathcal{L}_{S}
$$

Equivalence \& Exactness

Equivalence of Reformulations

Theorem
The 4 stochastic reformulations are equivalent
set of minimizers of the stochastic optimization problem =
set of solutions of the stochastic linear system

$$
=
$$

set of fixed points of the stochastic fixed point problem =
set of solutions of the stochastic intersection problem

Equivalence of Algorithms

Theorem

All algorithms we described are equivalent

1. Stochastic Gradient Descent
2. Stochastic Newton Method
3. Stochastic Proximal Point Method
4. Stochastic Preconditioning Method
5. Stochastic Fixed Point Method
6. Stochastic Projection Method

Exactness of Reformulations

Theorem

The set of solutions of all

$$
\mathbf{E}\left[H_{S}\right] \succ 0
$$

4 stochastic problems is

$$
\mathcal{L} \stackrel{\text { def }}{=}\{x: A x=b\}
$$

set of minimizers of the stochastic optimization problem =
set of solutions of the stochastic linear system

$$
=
$$

set of fixed points of the stochastic fixed point problem =
set of solutions of the stochastic intersection problem

Summary

Deterministic concept	Decomposition	Stochastic estimate		
Function f	$f(x)=\mathbf{E}\left[f_{S}(x)\right]$	Stochastic function $f_{S}(x)=\frac{1}{2}\\|A x-b\\|_{H_{S}}^{2}$		
Gradient $\nabla f(x)$	$\nabla f(x)=\mathbf{E}\left[\nabla f_{S}(x)\right]$	Stochastic gradient $\nabla f_{S}(x)=A^{\top} H_{S}(A x-b)$		
Hessian $\nabla^{2} f(x)$	$\nabla^{2} f(x)=\mathbf{E}\left[\nabla^{2} f_{S}(x)\right]$	Stochastic Hessian $\nabla^{2} f_{S}(x)=A^{\top} H_{S} A$		
Preconditioner P	$P=\mathbf{E}\left[P_{S}\right]$	Stochastic preconditioner $P_{S}=B^{-1} A^{\top} H_{S}$		
Preconditioned system	$P b=\mathbf{E}\left[P_{S} b\right]$	Stochastic system $P A x=P b$		
Operator $\phi(x)$	$\phi(x)=\mathbf{E}\left[\Pi_{\mathcal{L}_{S}}^{B}(x)\right]$	$P_{S} A x=P_{S} b$		
Set \mathcal{L}	$\mathcal{L}=\bigcap_{S \sim \mathcal{D}} \mathcal{L}_{S}$	Stochastic operator $\phi_{S}(x)=\Pi_{\mathcal{L}_{S}}^{B}(x)$		
	$\mathbf{E}_{S \sim \mathcal{D}}\left[1_{\mathcal{L}_{S}}(x)\right]=\cap_{S \sim \mathcal{D}} \mathcal{L}_{S}(x)$	$\mathcal{L}_{S}=\left\{x: S^{\top} A x=S^{\top} b\right\}$		

REFORMULATION	BASIC METHOD		
Stochastic optimization problem $\begin{aligned} & \text { Minimize } \quad f(x) \\ & f(x)=\mathbf{E}\left[f_{S}(x)\right] \end{aligned}$	SGD $\quad x^{t+1}=x^{t}-\omega \nabla f_{S^{t}}\left(x^{t}\right)$ SNM $\quad x^{t+1}=x^{t}-\omega\left(\nabla^{2} f_{S^{t}}\right)^{\dagger B} \nabla f_{S^{t}}\left(x^{t}\right)$ SPPM $\quad x^{t+1}=\arg \min _{x \in \mathbb{R}^{n}}\left\{f_{S^{t}}(x)+\frac{1-\omega}{2 \omega}\left\\|x-x^{t}\right\\|_{B}^{2}\right\}$		
Stochastic linear system $\begin{gathered} \text { Solve } \quad P A x=P b \\ P=\mathbf{E}\left[P_{S}\right] \end{gathered}$	Stochastic Preconditioning Method (SPM) $x^{t+1}=\arg \min _{x: P_{S^{t}} A x=P_{S^{t}} b}\left\\|x-x^{t}\right\\|_{B}$		
Stochastic fixed point problem $\begin{gathered} \text { Solve } \quad x=\phi(x) \\ \phi(x)=\mathbf{E}\left[\phi_{S}(x)\right] \end{gathered}$	Stochastic Fixed Point Method (SFPM) $x^{t+1}=\omega \phi_{S^{t}}\left(x^{t}\right)+(1-\omega) x^{t}$		
Stochastic intersection problem $\begin{aligned} & \text { Find } \quad x \in \mathcal{L} \\ & \mathcal{L}=\bigcap_{S \sim \mathcal{D}} \mathcal{L}_{S} \end{aligned}$	Stochastic Projection Method (SPM) $x^{t+1}=\omega \Pi_{\mathcal{L}_{S^{t}}}^{B}\left(x^{t}\right)+(1-\omega) x^{t}$		

Convergence

Key Matrix

(captures the convergence of the basic method)

$$
W \stackrel{\text { def }}{=} B^{-1 / 2} A^{\top} \mathbf{E}_{S \sim \mathcal{D}}\left[H_{S}\right] A B^{-1 / 2}
$$

$$
W=U \Lambda U^{\top}=\sum_{i=1}^{n} \lambda_{i} u_{i} u_{i}^{\top}
$$

$$
H_{S}=S\left(S^{\top} A B^{-1} A^{\top} S\right)^{\dagger} S^{\top}
$$

Eigenvalue decomposition

Basic Method: Complexity

Theorem [R \& Takáč, 2017]

$$
\mathbf{E}\left[U^{\top} B^{1 / 2}\left(x^{t}-x^{*}\right)\right]=(I-\omega \Lambda)^{t} U^{\top} B^{1 / 2}\left(x^{0}-x^{*}\right)
$$

stepsize / relaxation parameter

$$
W \stackrel{\text { def }}{=} B^{-1 / 2} A^{\top} \mathbf{E}_{S \sim \mathcal{D}}\left[H_{S}\right] A B^{-1 / 2}=U \Lambda U^{\top}
$$

Basic Method: Complexity

Convergence of Expected Iterates
$t \geq \frac{1}{\lambda_{\text {min }}^{+}} \log \left(\frac{1}{\epsilon}\right) \quad \stackrel{\omega=1}{\square}\left\|\mathbf{E}\left[x^{t}-x^{*}\right]\right\|_{B}^{2} \leq \epsilon$
$t \geq \frac{\lambda_{\max }}{\lambda^{+}} \log \left(\frac{1}{\epsilon}\right) \stackrel{\omega=1 / \lambda_{\text {max }}}{\square}\left\|\mathbf{E}\left[x^{t}-x^{*}\right]\right\|_{B}^{2} \leq \epsilon$

L2 Convergence
$t \geq \frac{1}{\lambda_{\text {min }}^{+}} \log \left(\frac{1}{\epsilon}\right) \stackrel{\omega=1}{\longmapsto} \mathbf{E}\left[\left\|x^{t}-x^{*}\right\|_{B}^{2}\right] \leq \epsilon$

Parallel \& Accelerated Methods

Parallel Method

Parallel Method

"Run 1 step of the basic method from x^{t} several times independently, and average the results."

> i.i.d.

$$
x^{t+1}=\frac{1}{\tau} \sum_{i=1}^{\tau} \phi_{\omega}\left(x^{t}, S_{i}^{t}\right)
$$

One step of the basic method from x^{t}

Parallel Method: Complexity

L2 Convergence

$$
\begin{array}{cc}
\tau=1 & \tau=+\infty \\
t \geq \frac{1}{\lambda_{\min }^{+}} \log \left(\frac{1}{\epsilon}\right) \quad \text { or } \quad t \geq \frac{\lambda_{\max }}{\lambda_{\min }^{+}} \log \left(\frac{1}{\epsilon}\right)
\end{array}
$$

$$
\mathbf{E}\left[\left\|x^{t}-x^{*}\right\|_{B}^{2}\right] \leq \epsilon
$$

Accelerated Method

Accelerated Method

$$
S^{t}, S^{t-1} \sim \mathcal{D} \text { (independent) }
$$

$$
x^{t+1}=\gamma \phi_{\omega}\left(x^{t}, S^{t}\right)+(1-\gamma) \phi_{\omega}\left(x^{t-1}, S^{t-1}\right)
$$

One step of the basic method from x^{t}
One step of the basic method from x^{t-1}

Accelerated Method: Complexity

Convergence of Iterates

$$
t \geq \sqrt{\frac{\lambda_{\max }}{\lambda_{\min }^{+}}} \log \left(\frac{1}{\epsilon}\right) \quad\left\|\mathbf{E}\left[x^{t}-x^{*}\right]\right\|_{B}^{2} \leq \epsilon
$$

$$
\text { Basic Method depends on } \frac{\lambda_{\max }}{\lambda_{\min }^{+}} \text {! }
$$

Acceleration Accelerates

More Relaxation Requires More Acceleration

Detailed Complexity Results

Alg.	ω	τ	γ	Quantity	Rate	Complexity	Theorem		
1	1	-	-	$\left\\|\mathrm{E}\left[x_{k}-x_{*}\right]\right\\|_{\mathbf{B}}^{2}$	$\left(1-\lambda_{\min }^{+}\right)^{2 k}$	$1 / \lambda_{\min }^{+}$	$4.3,4.4,4.6$		
1	$1 / \lambda_{\max }$	-	-	$\left\\|\mathrm{E}\left[x_{k}-x_{*}\right]\right\\|_{\mathbf{B}}^{2}$	$(1-1 / \zeta)^{2 k}$	ζ^{2}	$4.3,4.4,4.6$		
1	$\frac{2}{\lambda_{\min }^{+}+\lambda_{\max }}$	-	-	$\left\\|\mathrm{E}\left[x_{k}-x_{*}\right]\right\\|_{\mathbf{B}}^{2}$	$(1-2 /(\zeta+1))^{2 k}$	ζ	$4.3,4.4,4.6$		
1	1	-	-	$\mathrm{E}\left[\left\\|x_{k}-x_{*}\right\\|_{\mathbf{B}}^{2}\right]$	$\left(1-\lambda_{\min }^{+}\right)^{k}$	$1 / \lambda_{\min }^{+}$	4.8		
1	1	-	-	$\mathrm{E}\left[f\left(x_{k}\right)\right]$	$\left(1-\lambda_{\min }^{+}\right)^{k}$	$1 / \lambda_{\min }^{+}$	4.10		
2	1	τ	-	$\mathrm{E}\left[\left\\|x_{k}-x_{*}\right\\|_{\mathbf{B}}^{2}\right]$	$\left(1-\lambda_{\min }^{+}(2-\xi(\tau))\right)^{k}$		5.1		
2	$1 / \xi(\tau)$	τ	-	$\mathrm{E}\left[\left\\|x_{k}-x_{*}\right\\|_{\mathbf{B}}^{2}\right]$	$\left(1-\frac{\left.\lambda_{\min }^{+}\right)^{k}}{\xi(\tau)}\right)$	$\xi(\tau) / \lambda_{\min }^{+}$	5.1		
2	$1 / \lambda_{\max }$	∞	-	$\mathrm{E}\left[\left\\|x_{k}-x_{*}\right\\|_{\mathbf{B}}^{2}\right]$	$(1-1 / \zeta)^{k}$	ζ	5.1		
3	1	-	$\frac{2}{1+\sqrt{0.99 \lambda_{\min }^{+}}}$	$\left\\|\mathrm{E}\left[x_{k}-x_{*}\right]\right\\|_{\mathbf{B}}^{2}$	$\left(1-\sqrt{0.99 \lambda_{\min }^{+}}\right)^{2 k}$	$\sqrt{1 / \lambda_{\min }^{+}}$	5.3		
3	$1 / \lambda_{\max }$	-	$\frac{2}{1+\sqrt{0.99 / \zeta}}$	$\left\\|\mathrm{E}\left[x_{k}-x_{*}\right]\right\\|_{\mathbf{B}}^{2}$	$(1-\sqrt{0.99 / \zeta})^{2 k}$	$\sqrt{\zeta}$	5.3		

Table 1: Summary of the main complexity results. In all cases, $x_{*}=\Pi_{\mathcal{L}}^{\mathbf{B}}\left(x_{0}\right)$ (the projection of the starting point onto the solution space of the linear system). "Complexity" refers to the number of iterations needed to drive "Quantity" below some error tolerance $\epsilon>0$ (we suppress a $\log (1 / \epsilon)$ factor in all expressions in the "Complexity" column). In the table we use the following expressions: $\xi(\tau)=\frac{1}{\tau}+\left(1-\frac{1}{\tau}\right) \lambda_{\text {max }}$ and $\zeta=\lambda_{\text {max }} / \lambda_{\text {min }}^{+}$.

Summary

Summary

- 4 Equivalent stochastic reformulations of a linear system
- Stochastic optimization
- Stochastic fixed point problem
- Stochastic linear system
- Probabilistic intersection
- 3 Algorithms
- Basic (SGD, stochastic Newton method, stochastic fixed point method, stochastic proximal point method, stochastic projection method, ...)
- Parallel
- Accelerated
- Iteration complexity guarantees for various measures of success
- Expected iterates (closed form)
- L1 / L2 convergence
- Convergence of f; ergodic ...

Related Work

Basic method with unit stepsize and full rank A:

Robert Mansel Gower and P.R.
Randomized Iterative Methods for Linear Systems
SIAM J. Matrix Analysis \& Applications 36(4):1660-1690, 2015

- 2017 IMA Fox Prize ($2^{\text {nd }}$ Prize) in Numerical Analysis
- Most downloaded SIMAX paper

Removal of full rank assumption + duality:

Robert Mansel Gower and P.R.
Stochastic Dual Ascent for Solving Linear Systems

Inverting matrices \& connection to Quasi-Newton updates:

Robert Mansel Gower and P.R.
Randomized Quasi-Newton Methods are Linearly Convergent Matrix Inversion Algorithms arXiv:1602.01768, 2016

Computing the pseudoinverse:

Robert Mansel Gower and P.R.
Linearly Convergent Randomized Iterative Methods for Computing the Pseudoinverse arXiv:1612.06255, 2016

Application in machine learning:

Duality: Basic Method

Robert Mansel Gower (Edinburgh -> INRIA)

Recall the Initial Problem: Solve a Linear System

Assumption 1

The system is consistent (i.e., has a solution)

Optimization Formulation

Primal Problem

$$
B \succ 0
$$

$$
\begin{array}{cl}
\operatorname{minimize} & P(x):=\frac{1}{2}\|x-c\|_{B}^{2} \\
\text { subject to } & A x=b \\
A \in \mathbb{R}^{m \times n} & x \in \mathbb{R}^{n} \quad \frac{1}{2}(x-c)^{\top} B(x-c)
\end{array}
$$

Dual Problem

Unconstrained non-strongly concave quadratic maximization problem

$$
\begin{aligned}
\operatorname{maximize} & D(y):=(b-A c)^{\top} y-\frac{1}{2}\left\|A^{\top} y\right\|_{B^{-1}}^{2} \\
\text { subject to } & y \in \mathbb{R}^{m}
\end{aligned}
$$

Stochastic Dual Subspace Ascent

A random $m \times \tau$ matrix drawn i.i.d. in each iteration $S \sim \mathcal{D}$

$$
y^{t+1}=y^{t}+S \lambda^{t}
$$

Moore-Penrose pseudo-inverse of a small $\tau \times \tau$ matrix

$$
\begin{gathered}
\lambda^{t}:=\arg \min _{\lambda \in Q^{t}}\|\lambda\|_{2} \\
Q^{t}:=\arg \max _{\lambda} D\left(y^{t}+S \lambda\right)
\end{gathered}
$$

$$
\lambda^{t}=\left(S^{\top} A B^{-1} A^{\top} S\right)^{\dagger} S^{\top}\left(b-A\left(c+B^{-1} A^{\top} y^{t}\right)\right)
$$

$$
x^{*}=\nabla g^{*}\left(A^{\top} y^{*}\right)
$$

Dual Correspondence Lemma

Lemma

Affine mapping from \mathbb{R}^{m} to \mathbb{R}^{n}

$$
x(y):=c+B^{-1} A^{\top} y
$$

(Any) dual optimal point

$$
D\left(y^{*}\right)-D(y)=\frac{1}{2}\left\|x(y)-x^{*}\right\|_{B}^{2}
$$

Dual error (in function values)

Primal Method = Linear Image of the Dual Method

$$
x^{t}:=x\left(y^{t}\right)=c+B^{-1} A^{\top} y^{t}
$$

Corresponding primal iterates

Dual iterates produced by SDA

Convergence

Main Assumption

Assumption 2

The matrix

$$
\mathbf{E}_{S \sim \mathcal{D}}[\underbrace{S\left(S^{\top} A B^{-1} A^{\top} S\right)^{\dagger} S^{\top}}_{H_{S}}]
$$

Complexity
$\rho:=1-\lambda_{\min }^{+}\left(B^{-1 / 2} A^{\top} \mathbf{E}[H] A B^{-1 / 2}\right)$ of SDSA

$$
U_{0}=\frac{1}{2}\left\|x^{0}-x^{*}\right\|_{B}^{2}
$$

Theorem [Gower \& R., 2015]
Primal iterates:

$$
\mathbf{E}\left[\frac{1}{2}\left\|x^{t}-x^{*}\right\|_{B}^{2}\right] \leq \rho^{t} U_{0}
$$

Residual:

$$
\mathbf{E}\left[\left\|A x^{t}-b\right\|_{B}\right] \leq \rho^{t / 2}\|A\|_{B} \sqrt{2 \times U_{0}}
$$

Dual error:

$$
\mathbf{E}\left[O P T-D\left(y^{t}\right)\right] \leq \rho^{t} U_{0}
$$

Primal error: $\quad \mathbf{E}\left[P\left(x^{t}\right)-O P T\right] \leq \rho^{t} U_{0}+2 \rho^{t / 2} \sqrt{O P T \times U_{0}}$

Duality gap: $\quad \mathbf{E}\left[P\left(x^{t}\right)-D\left(y^{t}\right)\right] \leq 2 \rho^{t} U_{0}+2 \rho^{t / 2} \sqrt{O P T \times U_{0}}$

The Rate: Lower and Upper Bounds

$$
\operatorname{Rank}\left(S^{\top} A\right)=\operatorname{dim}\left(\boldsymbol{\operatorname { R a n g e }}\left(B^{-1} A^{\top} S\right)\right)=\operatorname{Tr}\left(B^{-1} Z\right)
$$

Insight: The lower bound is good when:
i) the dimension of the search space in the "constrain and approximate" viewpoint is large,
ii) the rank of A is small

Extensions

Extensions 1

Nicolas Loizou and P.R.
A New Perspective on Randomized Gossip Algorithms In Proceedings of The $4^{\text {th }}$ IEEE Global Conference on Signal Processing, 2016

Randomized Gossip Algorithms

Extensions 2

P.R. and Martin Takáč

Stochastic Reformulations of Linear Systems: Algorithms and Convergence Theory arXiv:1706.01108, 2017

Stuff I talked about earlier...

Duality:
 More Insights

1. Relaxation Viewpoint "Sketch and Project"

$$
\|x\|_{B}^{2}=x^{\top} B x
$$

$$
x^{t+1}=\arg \min _{x \in \mathbb{R}^{n}}\left\|x-x^{t}\right\|_{B}^{2}
$$

$$
\text { subject to } \quad S^{\top} A x=S^{\top} b
$$

S = identity matrix convergence in 1 step

$$
\min _{x}\left\{\left\|x-x^{0}\right\|: \quad A x=0\right\}
$$

2. Approximation Viewpoint "Constrain and Approximate"

$$
x^{t+1}=\arg \min _{x \in \mathbb{R}^{n}}\left\|x-x^{*}\right\|_{B}^{2}
$$

subject to $\quad x=x^{t}+B^{-1} A^{\top} S \lambda$
λ is free

3. Geometric Viewpoint "Random Intersect"

(1) $x^{t+1}=\arg \min _{x}\left\|x-x^{t}\right\|_{B} \quad$ subject to $\quad S^{\top} A x=S^{\top} b$
(2) $x^{t+1}=\arg \min _{x}\left\|x-x^{*}\right\|_{B} \quad$ subject to $\quad x=x^{t}+B^{-1} A^{\top} S \lambda$

$$
\left\{x^{t+1}\right\}=\left(x^{*}+\operatorname{Null}\left(S^{\top} A\right)\right) \bigcap\left(x^{t}+\operatorname{Range}\left(B^{-1} A^{\top} S\right)\right)
$$

4. Algebraic Viewpoint "Random Linear Solve"

$x^{t+1}=$ solution in x of the linear system

$$
\begin{gathered}
S^{\top} A x=S^{\top} b \\
x=x^{t}+B^{-1} A^{\top} S \lambda
\end{gathered}
$$

5. Algebraic Viewpoint "Random Update"

Random Update Vector

$$
x^{t+1}=x^{t}-B^{-1} A^{\top} S\left(S^{\top} A B^{-1} A^{\top} S\right)^{\dagger} S^{\top}\left(A x^{t}-b\right)
$$

Moore-Penrose pseudo-inverse

6. Analytic Viewpoint "Random Fixed Point"

$$
Z:=A^{\top} S\left(S^{\top} A B^{-1} A^{\top} S\right)^{\dagger} S^{\top} A
$$

$$
x^{t+1}-x^{*}=\left(I-B^{-1} Z\right)\left(x^{t}-x^{*}\right)
$$

Random Iteration Matrix

$$
\int_{x^{t+1}}^{x^{t}} x^{*}+\operatorname{Null}\left(S^{T} A\right)
$$

- x^{*}

$$
x^{t}+\operatorname{Range}\left(B^{-1} A^{T} S\right)
$$

$$
\begin{gathered}
\left(B^{-1} Z\right)^{2}=B^{-1} Z \\
\left(I-B^{-1} Z\right)^{2}=I-B^{-1} Z
\end{gathered}
$$

$B^{-1} Z$ projects orthogonally onto Range $\left(B^{-1} A^{\top} S\right)$
$I-B^{-1} Z$ projects orthogonally onto $\operatorname{Null}\left(S^{\top} A\right)$

EXTRA TOPIC: Special Cases

Special Case 1:
 Randomized Kaczmarz Method

Randomized Kaczmarz (RK) Method

M. S. Kaczmarz. Angenaherte Auflosung von Systemen linearer Gleichungen, Bulletin International de l'Académie Polonaise des Sciences et des Lettres. Classe des Sciences Mathématiques et Naturelles. Série A, Sciences Mathématiques 35, pp. 355-357, 1937

Kaczmarz method (1937)

RK arises as a special case for parameters B, S set as follows:

$$
B=I \quad S=e^{i}=(0, \ldots, 0,1,0, \ldots, 0) \text { with probability } p_{i}
$$

$$
x^{t+1}=x^{t}-\frac{A_{i:} x^{t}-b_{i}}{\left\|A_{i:}\right\|_{2}^{2}}\left(A_{i:}\right)^{T}
$$

RK was analyzed for $p_{i}=\frac{\left\|A_{i:}\right\|^{2}}{\|A\|_{F}^{2}}$

RK: Derivation and Rate

General Method

$$
x^{t+1}=x^{t}-B^{-1} A^{T} S\left(S^{T} A B^{-1} A^{T} S\right)^{\dagger} S^{T}\left(A x^{t}-b\right)
$$

Special Choice of Parameters

$$
\begin{aligned}
& B=I \\
& \mathbf{P}\left(S=e^{i}\right)=p_{i} \quad \Rightarrow S=e^{i} \\
& x^{t+1}=x^{t}-\frac{A_{i} \cdot x^{t-b_{i}}}{A_{i}: A_{2}^{2}}\left(A_{i:}\right)^{T}
\end{aligned}
$$

Complexity Rate
$p_{i}=\frac{\left\|A_{i i}\right\|^{2}}{\|A\|_{F}^{2}}$

$$
\mathbf{E}\left[\left\|x^{t}-x^{*}\right\|_{2}^{2}\right] \leq\left(1-\frac{\lambda_{\min }\left(A^{T} A\right)}{\|A\|_{F}^{2}}\right)^{t}\left\|x^{0}-x^{*}\right\|_{2}^{2}
$$

RK = SGD with a "smart" stepsize

$$
\frac{\frac{\rightharpoonup}{0}}{\frac{0}{x}}
$$

$$
\begin{gathered}
f(x)=\sum_{i=1}^{m} P_{i} f_{i}(x)=\mathrm{E}_{i}\left[f_{i}(x)\right] \\
f_{i}(x)=\frac{1}{2 p_{i}}\left(A_{i:} x-b_{i}\right)^{2}
\end{gathered}
$$

m

$$
x^{t+1}=x^{t}\left[\frac{A_{i:} \cdot x^{t}-b_{i}^{i}}{\left\|A_{i:}\right\|_{2}^{2}}\left(A_{i:}\right)^{T}\right.
$$

$$
\begin{aligned}
x^{t+1} & =x^{t}-h^{t} \nabla f_{i}\left(x^{t}\right) \\
& =x^{t}-\frac{\bar{h}^{t}}{p_{i}}\left(A_{i:} x^{t}-b_{i}\right)_{1}^{\top}\left(A_{i:}\right)^{T}
\end{aligned}
$$

RK is equivalent to applying SGD with a specific (smart!) constant stepsize!

$$
\left.x^{t+1}=\arg \min _{x \in \mathbb{R}^{n}}\left\|x-x^{*}\right\|_{2}^{2} \quad \text { s.t. } \quad x=x^{t}+\underline{y} A_{i:}\right)^{T}, \quad y \in \mathbb{R}
$$

Application: Average Consensus

$$
\begin{align*}
& \min _{x \in \mathbb{R}^{4}} \frac{1}{2}\|x-c\|_{2}^{2} \\
& \text { subject to } A x=0 \\
& A=\left(\begin{array}{cccc}
1 & -1 & 0 & 0 \\
0 & 1 & -1 & 0 \\
0 & 1 & 0 & -1
\end{array}\right) \quad c_{3}=10
\end{align*}
$$

Insight: Randomized Kaczmarz = Randomized Gossip Now also have: dual interpretation, block variants, ...

Application: Average Consensus

$$
\begin{aligned}
& \min _{x \in \mathbb{R}^{4}} \frac{1}{2}\|x-c\|_{2}^{2} \\
& \text { subject to } A x=0 \\
& A=\left(\begin{array}{cccc}
1 & -1 & 0 & 0 \\
0 & 1 & -1 & 0 \\
0 & 1 & 0 & -1
\end{array}\right) \gtrless c_{1}=10
\end{aligned}
$$

Insight: Randomized Kaczmarz = Randomized Gossip Now also have: dual interpretation, block variants, ...

Application: Average Consensus

$$
\begin{aligned}
& \min _{x \in \mathbb{R}^{4}} \frac{1}{2}\|x-c\|_{2}^{2} \\
& \text { subject to } A x=0 \\
& A=\left(\begin{array}{cccc}
1 & -1 & 0 & 0 \\
0 & 1 & -1 & 0 \\
0 & 1 & 0 & -1
\end{array}\right)<17.5
\end{aligned}
$$

Insight: Randomized Kaczmarz = Randomized Gossip Now also have: dual interpretation, block variants, ...

Application: Average Consensus

$$
\begin{aligned}
& \min _{x \in \mathbb{R}^{4}} \frac{1}{2}\|x-c\|_{2}^{2} \\
& \text { subject to } A x=0 \\
& A=\left(\begin{array}{cccc}
1 & -1 & 0 & 0 \\
0 & 1 & -1 & 0 \\
0 & 1 & 0 & -1
\end{array}\right)
\end{aligned}
$$

Insight: Randomized Kaczmarz = Randomized Gossip Now also have: dual interpretation, block variants, ...

RK: Further Reading

D. Needell. Randomized Kaczmarz solver for noisy linear systems. BIT 50 (2): 395-403, 2010
D. Needell and J. Tropp. Paved with good intentions: analysis of a randomized block Kaczmarz method. Linear Algebra and its Applications 441:199-221, 2012
D. Needell, N. Srebro and R. Ward. Stochastic gradient descent, weighted sampling and the randomized Kaczmarz algorithm. Mathematical Programming 155(1-2):549-573, 2016
A. Ramdas. Rows vs Columns for Linear Systems of Equations Randomized Kaczmarz or Coordinate Descent? arXiv:1406.5295, 2014

Special Case 2:
 Randomized Coordinate Descent

Randomized Coordinate Descent in 2D

Randomized Coordinate Descent in 2D

Randomized Coordinate Descent in 2D

Randomized Coordinate Descent in 2D

Randomized Coordinate Descent in 2D

Randomized Coordinate Descent in 2D

Randomized Coordinate Descent in 2D

Randomized Coordinate Descent in 2D

Randomized Coordinate Descent (RCD)

A. S. Lewis and D. Leventhal. Randomized methods for linear constraints: convergence rates and conditioning. Mathematics of OR 35(3), 641-654, 2010 (arXiv:0806.3015)

RCD (2008)

$$
\begin{gathered}
\min _{x \in \mathbb{R}^{n}}\left[f(x)=\frac{1}{2} x^{T} A x-b^{T} x\right] \\
x^{*}=A^{-1} b \quad \text { Assume: Positive definite }
\end{gathered}
$$

RCD arises as a special case for parameters B, S set as follows:

$$
B=A \quad S=e^{i}=(0, \ldots, 0,1,0, \ldots, 0) \text { with probability } p_{i}
$$

Recall: In RK we had $B=1$

$$
x^{t+1}=x^{t}-\frac{\left(A_{i:}\right)^{T} x^{t}-b_{i}}{A_{i i}} e^{i}
$$

$$
\text { RCD was analyzed for } p_{i}=\frac{A_{i i}}{\operatorname{Tr}(A)}
$$

RCD: Derivation and Rate

General Method

$$
x^{t+1}=x^{t}-\underset{B^{-1} A^{T} S}{ } \mid
$$

Special Choice of Parameters

Complexity Rate

$$
p_{i}=\frac{A_{i i}}{\operatorname{Tr}(A)} \quad \square \mathbf{E}\left[\left\|x^{t}-x^{*}\right\|_{A}^{2}\right] \leq\left(1-\frac{\lambda_{\min }(A)}{\operatorname{Tr}(A)}\right)^{t}\left\|x^{0}-x^{*}\right\|_{A}^{2}
$$

RCD: "Standard" Optimization Form

Yurii Nesterov. Efficiency of coordinate descent methods on huge-scale optimization

 problems. SIAM J. on Optimization, 22(2):341-362, 2012 (CORE Discussion Paper 2010/2)Nesterov considered the problem:

Convex and smooth

Nesterov assumed that the
following inequality holds for $\quad f\left(x+h e^{i}\right) \leq f(x)+\nabla_{i} f(x) h+\frac{L_{i}}{2} h^{2}$ all x, h and i :

Given a current iterate x, choosing h by minimizing the RHS gives:

Nesterov's RCD method:

$$
x^{t+1}=x^{t}-\frac{1}{L_{i}} \nabla_{i} f\left(x^{t}\right) e^{i}
$$

We recover RCD as we have seen it:

$$
x^{t+1}=x^{t}-\frac{\left(A_{i:}\right)^{T} x^{t}-b_{i}}{A_{i i}} e^{i}
$$

Experiment

Machine: 128 nodes of Hector Supercomputer (4096 cores)

Problem: LASSO, $n=1$ billion, $d=0.5$ billion, 3 TB

P.R. and Martin Takáč. Distributed coordinate descent for learning with big data. Journal of Machine Learning Research 17(75):1-25, 2016 (arXiv:1310.2059, 2013)

LASSO: 3TB data + 128 nodes

Experiment

Machine: 128 nodes of Archer Supercomputer

Problem: LASSO, $n=5$ million, $d=50$ billion, 5 TB ($60,000 \mathrm{nnz}$ per row of A)

Olivier Fercoq, Zheng Qu, P.R. and Martin Takáč. Fast distributed coordinate descent for minimizing non-strongly convex losses. In 2014 IEEE Int. Workshop on Machine Learning for Signal Proc, 2014

Special Case 3:
 Randomized Newton Method

Randomized Newton (RN)

$$
\begin{gathered}
\min _{x \in \mathbb{R}^{n}}\left[f(x)=\frac{1}{2} x^{T} A x-b^{T} x\right] \\
x^{*}=A^{-1} b \quad \text { Assume: Positive definite }
\end{gathered}
$$

RN arises as a special case for parameters B, S set as follows:

$$
\begin{aligned}
& B=A=I_{: C} \text { with probability } p_{C} \\
& p_{C} \geq 0 \quad \forall C \subseteq\{1, \ldots, n\} \sum_{C \subseteq\{1, \ldots, n\}} p_{C}=1
\end{aligned}
$$

RCD is special case with $p_{C}=0$ whenever $|C| \neq 1$

RN: Derivation

General Method

$$
x^{t+1}=x^{t}-\underset{B^{-1} A^{T} S}{ } \mid
$$

Special Choice of Parameters $\quad B=A$

$$
x^{t+1}=x^{t}-I_{: C}:\left(\left(I_{: C}\right)^{T} A I_{: C}\right)^{-1} \mid\left(I_{: C}\right)^{T}\left(A x^{t}-b\right)
$$

This method minimizes f exactly in a random subspace spanned by the coordinates belonging to C

Experiment 4

Machine: laptop

Problem: Ridge Regression, $n=8124, d=112$

Zheng Qu, P.R., Martin Takáč and Olivier Fercoq, SDNA: Stochastic Dual Newton Ascent for Empirical Risk Minimization. ICML, 2016

Special Case 4: Gaussian Descent

Gaussian Descent

General Method

$$
x^{t+1}=x^{t}-\begin{array}{ll}
B^{-1} A^{T} S \\
i
\end{array}
$$

Special Choice of Parameters

$$
\left.S \sim N(0, \Sigma) \quad \square x^{t+1}=x^{t} \frac{}{\frac{1 S^{T}}{S}\left(A x^{-}-b\right)} \right\rvert\,
$$

Positive definite covariance matrix
Complexity Rate

$$
\mathbf{E}\left[\left\|x^{t}-x^{*}\right\|_{B}^{2}\right] \leq \rho^{t}\left\|x^{0}-x^{*}\right\|_{B}^{2}
$$

Gaussian Descent: The Rate

Lemma [Gower \& R, 2015]

$$
\mathbf{E}\left[\frac{\xi \xi^{T}}{\|\xi\|_{2}^{2}}\right] \succeq \frac{2}{\pi} \frac{\Omega}{\operatorname{Tr}(\Omega)}
$$

$$
\rho \leq 1-\frac{2}{\pi} \frac{\lambda_{\min }(\Omega)}{\operatorname{Tr}(\Omega)}
$$

This follows from the general lower bound

Gaussian Descent: Further Reading

Yurii Nesterov and Vladimir Spokoiny. Random gradient-free minimization of convex functions. Foundations of Computational Mathematics 17(2):527-566, 2017 functions with random pursuit. SIAM Journal on Optimization 23(2):1284-1309, 2014
S. U. Stitch. Convex optimization with random pursuit. PhD Thesis, ETH Zurich, 2014

EXTRA TOPIC: Stochastic

 Preconditioning
Stochastic Preconditioning

Definition [R \& Takáč, 2017]

Given a family of randomized algorithms for solving some problem, indexed by a set of randomization strategies defining the family, how to choose the best method in the family?

Our context:

$$
\text { How to choose } \mathcal{D} \text { and } B ?
$$

Fixing Probabilities, Choosing Matrices

Formalizing the Problem

Consider family of distributions \mathcal{D} parameterised as follows:

$$
S=S_{i} \in \mathbb{R}^{m}(\text { for } i=1,2, \ldots, m) \text { with probability } 1 / m
$$

These vectors can be chosen!
Probabilities are fixed!
For simplicity, assume A is $n \times n$ and positive definite Choose $B=A$
Recall:
Theorem [Gower \& R, 2015] For the basic method we have

$$
t \geq \underset{\left(\lambda_{\min }^{+}\right.}{1} \log \left(\frac{1}{\epsilon}\right) \quad \omega=1 \quad \mathbf{E}\left[\left\|x^{t}-x^{*}\right\|_{B}^{2}\right] \leq \epsilon
$$

We will focus on maximizing this

Problem and Solution

$$
W \stackrel{\text { def }}{=} B^{-1 / 2} A^{\top} \mathbf{E}_{S \sim \mathcal{D}}\left[H_{S}\right] A B^{-1 / 2}
$$

$$
\max _{S_{1}, \ldots, S_{m} \in \mathbb{R}^{m}} \lambda_{\min }^{+}(W)
$$

Theorem [Gower \& R, 2015]
The optimal vectors S_{1}, \ldots, S_{m} are the eigenvectors of A.
Moreover, $W=\frac{1}{m} I$, and hence $\lambda_{i}=\frac{1}{m}$ for all i

Corollary $\quad \omega=1$
$t \geq m \log \left(\frac{1}{\epsilon}\right) \quad \mathbf{E}\left[\left\|x^{t}-x^{*}\right\|_{B}^{2}\right] \leq \epsilon$
"Spectral" basic method (complexity independent of condition number)

Comments

- The spectral basic method is impractical in its pure form
- Need to compute eigenvectors of A !
- We ignore the fact that choice of D influences the cost of 1 iteration
- However, it highlights the potential power of stochastic preconditioning
- In generalizations (to convex/nonconvex opt), it only makes sense to consider a small family of distributions

$$
\min _{x \in \mathbb{R}^{n}} f(x)=\frac{1}{m} \sum_{i=1}^{m} f_{i}(x)
$$

It is natural to randomize over i.
This corresponds to the family:

$$
S=e_{i} \text { with probability } p_{i}>0
$$

$$
x^{t+1}=x^{t}-\omega \nabla f_{i}\left(x^{t}\right)
$$

Importance Sampling: Fixing Matrices, Choosing Probabilities

Formalizing the Problem

Consider family of distributions \mathcal{D} parameterised as follows:

$$
S=S_{i} \in \mathbb{R}^{m}(\text { for } i=1,2, \ldots, r) \text { with probability } p_{i} \geq 0
$$

These vectors are fixed!
Probabilities can be chosen!

Theorem [Gower \& R, 2015] For the basic method we have

$$
t \geq \overbrace{\lambda_{\text {min }}^{+}}^{1} \log \left(\frac{1}{\epsilon}\right) \quad \omega=1 \quad \mathbf{E}\left[\left\|x^{t}-x^{*}\right\|_{B}^{2}\right] \leq \epsilon
$$

Again, we will focus on maximizing this

Problem and Solution

$$
W \stackrel{\text { def }}{=} B^{-1 / 2} A^{\top} \mathbf{E}_{S \sim \mathcal{D}}\left[H_{S}\right] A B^{-1 / 2}
$$

$$
\max _{p_{1}, \ldots, p_{r} \geq 0, \sum_{i} p_{i}=1} \lambda_{\min }^{+}(W)
$$

Sometimes we know that $\lambda_{\text {min }}>0$
Then we can reformulate the above as a semidefinite program:

$$
\begin{array}{rl}
\max _{p, t} & t \\
\text { subject to } & \sum_{i=1}^{r} p_{i}\left(V_{i}\left(V_{i}^{T} V_{i}\right)^{\dagger} V_{i}^{T}\right) \succeq t \cdot I, \quad V_{i}=B^{-1 / 2} A^{T} S_{i} \\
& p \geq 0, \quad \sum_{i=1}^{r} p_{i}=1
\end{array}
$$

Leads to different (better) probabilities than "Lipschitz" or "uniform" probabilities known in convex optimization. This is because we have more structure to exploit.

RCD: Optimal Probabilities can Lead to a Remarkable Improvement

RK: Convenient vs Optimal

RCD: Convenient vs Optimal

(a) aloi

(c) liver-disorders-ridge

(b) covtype.libsvm.binary

(d) mushrooms-ridge-opt

EXTRA TOPIC: Randomized
 Matrix Inversion

HOW DOES ABMGKWRIS POET WRIEP

Robert Mansel Gower (Edinburgh -> Paris)

PDF

$\underbrace{}_{\text {Adobe }}$

Robert Mansel Gower and P.R.
Randomized Quasi-Newton Methods are Linearly Convergent Matrix Inversion Algorithms
arXiv:1602.01768, 2016

The Problem: Invert a Matrix

Assumption 1 Matrix A is invertible

Inverting Symmetric Matrices

1. Sketch and Project
 $$
\|X\|_{F(B)}:=\sqrt{\operatorname{Tr}\left(X^{\top} B X B\right)}
$$

$$
\begin{gathered}
X^{t+1}=\arg \min _{X \in \mathbb{R}^{n \times n}}\left\|X-X^{t}\right\|_{F(B)}^{2} \\
\text { subject to } \quad S^{\top} A X=S^{\top}, \quad X=X^{\top}
\end{gathered}
$$

- Quasi-Newton updates are of this form: $S=$ deterministic column vector
- We get randomized block version of quasi-Newton updates!
- Randomized quasi-Newton updates are linearly convergent matrix inversion methods
- Interpretation: Gaussian Inference (Henning, 2015)

Donald Goldfarb. A Family of Variable-Metric Methods Derived by Variational Means. Mathematics of Computation 24(109), 1970

Gaussian Inference

```
Philipp Henning
Probabilistic Interpretation of Linear Solvers
SIAM Journal on Optimization 25(1):234-260, 2015
```

The new iterate X_{k+1} can be interpreted as

- the mean of a posterior distribution
- under a Gaussian prior with mean X_{k} and
- noiseless (and random) linear observation of A^{-1}

Randomized QN Updates

B	Equation	Method
I	$A X=I$	Powel-Symmetric-Broyden (PSB)
A^{-1}	$X A^{-1}=I$	Davidon-Fletcher-Powell (DFP)
A	$A X=I$	Broyden-Fletcher-Goldfarb-Shanno (BFGS)

- All these QN methods arise as special cases of the framework
- All are linearly convergent, with explicit convergence rates
- We also recover non-symmetric updates such as Bad Broyden and Good Broyden
- We get block versions
- We get randomized versions of new QN updates

2. Constrain and Approximate

$$
X^{t+1}=\arg \min _{X \in \mathbb{R}^{n \times n}}\left\|X-A^{-1}\right\|_{F(B)}^{2}
$$

s.t. $\quad X=X^{t}+\Lambda S^{\top} A B^{-1}+B^{-1} A^{\top} S \Lambda^{\top}$

$$
\Lambda \in \mathbb{R}^{n \times \tau} \text { is free }
$$

New formulation even for standard QN methods

Randomized BFGS: $B=A, \tau=1$

$$
\begin{array}{ll}
X^{t+1} & =\arg \min _{X \in \mathbb{R}^{n \times n}}\left\|X-A^{-1}\right\|_{F(A)}^{2}=\|A X-I\|_{F}^{2} \\
\text { s.t. } & X=X^{t}+\lambda S^{\top}+S \lambda^{\top} \\
& \lambda \in \mathbb{R}^{n} \text { is free } \\
\text { RBFGS performs "best" } & \text { symmetric rank-2 update }
\end{array}
$$

4. Random Update

$$
H=S\left(S^{\top} A B^{-1} A^{\top} S\right)^{\dagger} S^{\top}
$$

$$
\begin{aligned}
X^{t+1}=X^{t} & -\left(X^{t} A-I\right) H A B^{-1} \\
& +B^{-1} A H\left(A X^{t}-I\right)\left(A H A B^{-1}-I\right)
\end{aligned}
$$

6. Random Fixed Point

$$
\begin{aligned}
& X^{t+1}-A^{-1}= \\
& \quad\left(I-B^{-1} A^{\top} H A\right)\left(X^{t}-A^{-1}\right)\left(I-A H A^{\top} B^{-1}\right)
\end{aligned}
$$

Complexity / Convergence

Theorem [GR'16]

$$
\|M\|_{B}:=\left\|B^{1 / 2} M B^{1 / 2}\right\|_{2}
$$

(1) $\left\|\mathbf{E}\left[X^{t}-A^{-1}\right]\right\|_{B} \leq \rho^{t}\left\|X^{0}-A^{-1}\right\|_{B}$
(2) $\mathbf{E}[H] \succ 0 \quad \square \quad \rho<1$
$\mathbf{E}\left[\left\|X^{t}-A^{-1}\right\|_{F(B)}^{2}\right] \leq \rho^{t}\left\|X^{0}-A^{-1}\right\|_{F(B)}^{2}$

Summary: Matrix Inversion

- Block version of QN updates
- New points of view (constrain and approximate, ...)
- New link between QN and approx. inverse preconditioning
- First time randomized QN updates are proposed
- First stochastic method for matrix inversion (with complexity bounds)?
- Linear convergence under weak assumptions
- Did not talk about:
- Nonsymmetric variants
- Theoretical bounds for discretely distributed S
- Adaptive randomized BFGS
- Limited memory and factored implementations
- Experiments (Newton-Schultz; MinRes)
- Use in empirical risk minimization [Gower, Goldfarb \& R. 2016]
- Extension: computation of the pseudoinverse [Gower \& R. 2016]

Extensions

Matrix Inversion

Ongoing work:

- Distributed, accelerated and adaptive variants - Optimization with linear constraints, ...

Machine Learning

Robert M. Gower, Donald Goldfarb and P.R.
Stochastic Block BFGS: Squeezing More Curvature out of Data
ICML, 2016

Zheng Qu, P.R., Martin Takáč and Olivier Fercoq
Stochastic Dual Newton Ascent for Empirical Risk Minimization ICML, 2016

The End

Martin Takáč
(Lehigh)

Virginia Smith (Berkeley)

Zeyuan Allen-Zhu (Princeton)

Jakub Mareček (IBM)

Jakub Konečný (Edinburgh)

Nati Srebro (TTI Chicago)

Zheng Qu (Hong Kong)

Jie Liu
(Lehigh)

Olivier Fercoq (Telecom ParisTech)

Michael Jordan (Berkeley)

Rachael Tappenden (Johns Hopkins)

Dominik Csba (Edinburgh)

Robert M Gower (Edinburgh)

Tong Zhang (Rutgers \& Baidu)

Martin Jaggi
(ETH Zurich)

[^0]: Legendre-Fenchel transformatio

