

Stochastic Reformulations of Linear Systems: Algorithms and Convergence Theory

Peter Richtárik

King Abdullah University of Science and Technology

Modern Convex Optimization and Applications Workshop in honour of Arkadi Nemirovski's 70th birthday Fields Institute, Toronto July 4-7, 2017

Arkadi Nemirovski

Verified email at isye.gatech.edu - Homepage

Engineering, Georgia

Google Scholar

-	
NOO	
1 man 1	

Title 1–20	Cited by	Year
LMI Control Toolbox for use with Matlab. 1995. The MATH Works P Gahinet, A Nemirovski, AJ Laub, M Chilali Inc., Natick, MA	5763	*
Interior-point polynomial algorithms in convex programming Y Nesterov, A Nemirovskii Society for industrial and applied mathematics	5125	1994
Lectures on modern convex optimization analysis, algorithms and engineering applications (MPS/SIAM series on optimization, 2) A BEN-TAL, A NEMIROVSKI	2198	* 2001
Robust convex optimization A Ben-Tal, A Nemirovski Mathematics of operations research 23 (4), 769-805	1998	1998
Robust optimization A Ben-Tal, L El Ghaoui, A Nemirovski Princeton University Press	1916	2009
Robust solutions of uncertain linear programs A Ben-Tal, A Nemirovski Operations research letters 25 (1), 1-13	1595	1999
Problem Complexity and Method Efficiency in Optimization AS Nemirovsky, DB Yudin J. Wiley @ Sons, New York	1365	* 1983
Robust solutions of linear programming problems contaminated with uncertain data A Ben-Tal, A Nemirovski Mathematical programming 88 (3), 411-424	1298	2000
Robust optimization—methodology and applications A Ben-Tal, A Nemirovski Mathematical programming 92 (3), 453-480	999	2002
Adjustable robust solutions of uncertain linear programs A Ben-Tal, A Goryashko, E Guslitzer, A Nemirovski Mathematical Programming 99 (2), 351-376	830	2004
Stochastic approximation approach to stochastic programming A Nemirovski, A Juditsky, G Lan, A Shapiro SIAM Journal on Optimization 19 (4), 1574-1609	800	2009

Professor and Jh. Hunter Academic Chair, School of Industrial and Systems

optimization, operations research, convex optimization, nonparametric statistics

A System of Linear Equations

m equations with n unknowns

Assumption: The system is consistent (i.e., a solution exists)

Part I Stochastic Reformulations

P.R. and Martin Takáč Stochastic Reformulations of Linear Systems: Algorithms and Convergence Theory *arXiv:1706.01108*, 2017

Stochastic Reformulations of Linear Systems

Example: B = identity $\mathcal{D} = \text{uniform over } e_1, \dots, e_m \text{ (unit basis vectors in } \mathbb{R}^m \text{)}$

Theorem

- a) These 4 problems have the same solution sets
- b) Necessary & sufficient conditions for the solution set to be equal to $\{x : Ax = b\}$

Reformulation 1: Stochastic Optimization

$$\begin{aligned} \text{Minimize } f(x) &\stackrel{\text{def}}{=} \mathbf{E}_{S \sim \mathcal{D}}[f_S(x)] \\ f_S(x) &= \frac{1}{2} \|x - \Pi^B_{\mathcal{L}_S}(x)\|^2_B = \frac{1}{2} (Ax - b)^\top H(Ax - b) \\ \mathcal{L}_S &= \{x : S^\top Ax = S^\top b\} \end{aligned}$$

Reformulation 2: Stochastic Linear System

Instead of
$$Ax = b$$
 we solve
the preconditioned system:
Solve $B^{-1}A^{\top}\mathbf{E}_{S\sim\mathcal{D}}[H]Ax = B^{-1}A^{\top}\mathbf{E}_{S\sim\mathcal{D}}[H]b$
preconditioner

Instead of $B^{-1}A^{\top}\mathbf{E}[H]A$ we have access to $B^{-1}A^{\top}HA$

Unbiased estimate of the preconditioner

Reformulation 3: Stochastic Fixed Point Problem

Solve
$$x = \mathbf{E}_{S \sim \mathcal{D}} \left[\Pi^B_{\mathcal{L}_S}(x) \right]$$

Projection in *B*-norm onto $\mathcal{L}_S = \{x : S^\top A x = S^\top b\}$

Reformulation 4: Probabilistic Intersection Problem

Find
$$x \in \mathbb{R}^n$$
 such that $\mathbf{P}(x \in \mathcal{L}_S) = 1$
 $\mathcal{L}_S = \{x : S^\top A x = S^\top b\}$

Sketched system

Part II Randomized Algorithms

Viewpoint 1: Stochastic Optimization

Stochastic Gradient Descent

A key method in machine learning

Stochastic "Newton" Descent

Stochastic Proximal Point Method

Viewpoint 3: Stochastic Fixed Point Method

Stochastic Fixed Point Method

Part III Complexity

Basic Method

Basic Method: Complexity

$$\mathbf{E}[U^{\top}B^{1/2}(x^{t} - x^{*})] = (I - \omega\Lambda)^{t}U^{\top}B^{1/2}(x^{0} - x^{*})$$

stepsize / relaxation parameter
$$W = B^{-1/2}A^{\top}\mathbf{E}_{S\sim\mathcal{D}}[H]AB^{-1/2} = U\Lambda U^{\top}$$

$$H = S(S^{\top}AB^{-1}A^{\top}S)^{\dagger}S^{\top}$$

Basic Method: Complexity

Convergence of Expected Iterates

$$t \ge \frac{1}{\lambda_{\min}^{+}} \log\left(\frac{1}{\epsilon}\right) \quad \stackrel{\omega=1}{\longrightarrow} \quad \|\mathbf{E}[x^{t} - x^{*}]\|_{B}^{2} \le \epsilon$$
$$t \ge \frac{\lambda_{\max}}{\lambda_{\min}^{+}} \log\left(\frac{1}{\epsilon}\right) \quad \stackrel{\omega=1/\lambda_{\max}}{\longrightarrow} \quad \|\mathbf{E}[x^{t} - x^{*}]\|_{B}^{2} \le \epsilon$$

L2 Convergence

$$t \ge \frac{1}{\lambda_{\min}^+} \log\left(\frac{1}{\epsilon}\right) \quad \stackrel{\omega=1}{\longrightarrow} \quad \mathbf{E}\left[\|x^t - x^*\|_B^2\right] \le \epsilon$$

Parallel Method

Parallel Method

"Run 1 step of the basic method from x^t several times independently, and average the results."

$$x^{t+1} = \frac{1}{\tau} \sum_{i=1}^{\tau} \phi_{\omega}(x^{t}, S_{i}^{t})$$

One step of the basic method from x^t

i.i.d.

Parallel Method: Complexity

L2 Convergence

$$\mathbf{E}\left[\|x^t - x^*\|_B^2\right] \le \epsilon$$

Accelerated Method

Accelerated Method

One step of the basic method from x^{t-1}

Accelerated Method: Complexity

Convergence of Iterates

Detailed Complexity Results

Alg.	ω	τ	γ	Quantity	Rate	Complexity	Theorem
1	1	-	-	$\ \mathbb{E} [x_k - x_*] \ _{\mathbf{B}}^2$	$(1-\lambda_{\min}^+)^{2k}$	$1/\lambda_{\min}^+$	4.3, 4.4, 4.6
1	$1/\lambda_{ m max}$	-	-	$\ \operatorname{E}\left[x_{k}-x_{*}\right]\ _{\mathbf{B}}^{\overline{2}}$	$(1-1/\zeta)^{2k}$	ζ	4.3, 4.4, 4.6
1	$\frac{2}{\lambda^+$, $+\lambda^-$	-	-	$\ \operatorname{E}\left[x_{k}-x_{*} ight]\ _{\mathbf{B}}^{2}$	$(1-2/(\zeta+1))^{2k}$	ζ	4.3, 4.4, 4.6
1	1	_	-	$\mathbb{E}\left[\ x_k - x_*\ _{\mathbf{P}}^2\right]$	$(1-\lambda_{\min}^+)^k$	$1/\lambda_{\min}^+$	4.8
1	1	-	-	$\mathrm{E}\left[f(x_k)\right]$	$(1-\lambda_{\min}^{+})^k$	$1/\lambda_{\min}^{+}$	4.10
2	1	τ	-	$\mathrm{E}\left[\ x_k - x_*\ _{\mathbf{B}}^2\right]$	$\left(1-\lambda_{\min}^+\left(2-\xi(au) ight) ight)^k$		5.1
2	$1/\xi(au)$	τ	-	$\mathrm{E}\left[\ x_k - x_*\ _{\mathbf{B}}^2\right]$	$\left(1-rac{\lambda_{\min}^+}{\xi(au)} ight)^k$	$\xi(au)/\lambda_{\min}^+$	5.1
2	$1/\lambda_{ m max}$	∞	-	$\mathrm{E}\left[\ x_k - x_*\ _{\mathbf{B}}^2\right]$	$(1-1/\zeta)^k$	ζ	5.1
3	1	-	$\frac{2}{1+\sqrt{0.99\lambda_{\min}^+}}$	$\ \mathbf{E}\left[x_k - x_*\right]\ _{\mathbf{B}}^2$	$\left(1-\sqrt{0.99\lambda_{\min}^+} ight)^{2k}$	$\sqrt{1/\lambda_{\min}^+}$	5.3
3	$1/\lambda_{ m max}$	-	$\frac{2}{1+\sqrt{0.99/\zeta}}$	$\ \operatorname{E}\left[x_{k}-x_{*} ight]\ _{\mathbf{B}}^{2}$	$\left(1-\sqrt{0.99/\zeta} ight)^{2k}$	$\sqrt{\zeta}$	5.3

Table 1: Summary of the main complexity results. In all cases, $x_* = \Pi_{\mathcal{L}}^{\mathbf{B}}(x_0)$ (the projection of the starting point onto the solution space of the linear system). "Complexity" refers to the number of iterations needed to drive "Quantity" below some error tolerance $\epsilon > 0$ (we suppress a $\log(1/\epsilon)$ factor in all expressions in the "Complexity" column). In the table we use the following expressions: $\xi(\tau) = \frac{1}{\tau} + (1 - \frac{1}{\tau})\lambda_{\max}$ and $\zeta = \lambda_{\max}/\lambda_{\min}^+$.

Part IV Conclusion

Contributions

- 4 Equivalent stochastic reformulations of a linear system
 - Stochastic optimization
 - Stochastic fixed point problem
 - Stochastic linear system
 - Probabilistic intersection
- 3 Algorithms
 - Basic (SGD, stochastic Newton method, stochastic fixed point method, stochastic proximal point method, stochastic projection method, ...)
 - Parallel
 - Accelerated
- Iteration complexity guarantees for various measures of success
 - Expected iterates (closed form)
 - L1 / L2 convergence
 - Convergence of *f*; ergodic ...

Related Work

Basic method with unit stepsize and full rank A:

Robert Mansel Gower and P.R. **Randomized Iterative Methods for Linear Systems** *SIAM J. Matrix Analysis & Applications* 36(4):1660-1690, 2015

Removal of full rank assumption + duality:

Robert Mansel Gower and P.R. **Stochastic Dual Ascent for Solving Linear Systems** *arXiv:1512.06890*, 2015

Inverting matrices & connection to Quasi-Newton updates:

Robert Mansel Gower and P.R. **Randomized Quasi-Newton Methods are Linearly Convergent Matrix Inversion Algorithms** *arXiv:1602.01768*, 2016

Computing the pseudoinverse:

Robert Mansel Gower and P.R. Linearly Convergent Randomized Iterative Methods for Computing the Pseudoinverse *arXiv:1612.06255*, 2016

Application in machine learning:

Robert Mansel Gower, Donald Goldfarb and P.R. Stochastic Block BFGS: Squeezing More Curvature out of Data ICML 2016

- 2017 IMA Fox Prize (2nd Prize) in Numerical Analysis
- Most downloaded SIMAX paper

THE END