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A	System	of	Linear	Equations

Ax = b

m

n A 2 Rm⇥n
, x 2 Rn

, b 2 Rm

m equations with n unknowns

Assumption:	The	system	is	consistent	(i.e.,	a	solution	exists)



Part	I
Stochastic	Reformulations

P.R.	and	Martin	Takáč
Stochastic	Reformulations	of	Linear	Systems:	Algorithms	and	
Convergence	Theory	
arXiv:1706.01108, 2017



Stochastic	Reformulations	
of	Linear	Systems

Ax = b

1. Stochastic	Optimization
2. Stochastic	Linear	System
3. Stochastic	Fixed	Point
4. Probabilistic	Intersection

Theorem
a) These	4	problems	have	the	same	solution	sets
b) Necessary	&	sufficient	conditions	for	the	solution	set	

to	be	equal	to	{x : Ax = b}

B,D

n⇥ n pos def

distribution over m⇥ q matrices

B = identity
D = uniform over e1, . . . , em (unit basis vectors in Rm

)

Example:



Reformulation	1:	
Stochastic	Optimization

Minimize f(x)
def
= ES⇠D[fS(x)]

H = S(S>AB�1A>S)†S>LS = {x : S

>
Ax = S

>
b}

fS(x) =
1
2kx�⇧B

LS
(x)k2B = 1

2 (Ax� b)>H(Ax� b)



Reformulation	2:	
Stochastic	Linear	System

preconditioner

H = S(S>AB�1A>S)†S>Instead	of	
Ax = b

the	preconditioned	system:

we	solve	

Instead of B�1A>E[H]A we have access to B�1A>HA

Unbiased	estimate	of	the	preconditioner

Solve B�1A>ES⇠D[H]Ax = B�1A>ES⇠D[H]b



Reformulation	3:	
Stochastic	Fixed	Point	Problem

Projection in B-norm onto LS = {x : S

>
Ax = S

>
b}

Solve x = ES⇠D
⇥
⇧

B
LS

(x)

⇤



Reformulation	4:	
Probabilistic	Intersection	Problem

LS = {x : S

>
Ax = S

>
b}

Sketched	system

S	discrete

Find x 2 Rn such that P(x 2 LS) = 1

{x : P(x 2 LS) = 1} =
T

S LS



Part	II
Randomized	Algorithms



Viewpoint	1:
Stochastic	Optimization	



Stochastic	Gradient	Descent

S ⇠ Dconstant	stepsize

x

t+1 = x

t � !rfS(xt)

A	key	method	in	machine	learning

“stochastic	gradient”



Stochastic	“Newton”	Descent

S ⇠ D

B- pseudoinverse of	the	
“stochastic	Hessian”

x

t+1 = x

t � !(r2
fS)†BrfS(xt)

“stochastic	gradient”Constant	stepsize



Stochastic	Proximal	Point	Method

S ⇠ D

x

t+1 = arg min
x2Rn

⇢
f

S

(x) +
! � 1

2!
kx� x

tk2
B

�



Viewpoint	3:
Stochastic	Fixed	Point	

Method	



Stochastic	Fixed	Point	Method

S ⇠ D

Relaxation	parameter

Stochastic	fixed	point	
mapping

x

t+1 = !⇧B
LS

(xt) + (1� !)xt



Part	III
Complexity



Basic	Method



Basic	Method:	Complexity

H = S(S>AB�1A>S)†S>

E[U>
B

1/2(xt � x

⇤)] = (I � !⇤)tU>
B

1/2(x0 � x

⇤)

W = B�1/2A>ES⇠D[H]AB�1/2 = U⇤U>

stepsize /	relaxation	parameter



Basic	Method:	Complexity

t � �
max

�+

min

log

✓
1

✏

◆
kE[xt � x

⇤]k2B  ✏

! = 1/�
max

! = 1

t � 1

�+
min

log

✓
1

✏

◆
kE[xt � x

⇤]k2B  ✏

! = 1

t � 1

�+
min

log

✓
1

✏

◆
E
⇥
kxt � x

⇤k2B
⇤
 ✏

Convergence	of	Expected	Iterates

L2	Convergence



Parallel	Method



Parallel	Method

x

t+1 = 1
⌧

P⌧
i=1 �!(xt

, S

t
i )

i.i.d.

“Run 1 step of the basic method from x

t

several times independently,

and average the results.”

One step of the basic method from x

t



Parallel	Method:	Complexity

t � 1

�+
min

log

✓
1

✏

◆

E
⇥
kxt � x

⇤k2B
⇤
 ✏

L2	Convergence

⌧ = 1

or

⌧ = +1

t � �
max

�+

min

log

✓
1

✏

◆



Accelerated	Method



Accelerated	Method

Acceleration	parameter	
(between	1	and	2)

x

t+1 = ��!(xt
, S

t) + (1� �)�!(xt�1
, S

t�1)

St, St�1 ⇠ D (independent)

One step of the basic method from x

t�1

One step of the basic method from x

t



Accelerated	Method:	Complexity

Convergence	of	Iterates

kE[xt � x

⇤]k2B  ✏

Basic	Method	depends	on																			!

t �

s
�
max

�+

min

log

✓
1

✏

◆

�
max

�+

min



Detailed	Complexity	Results



Part	IV
Conclusion



Contributions
• 4	Equivalent	stochastic	reformulations	of	a	linear	system

– Stochastic	optimization
– Stochastic	fixed	point	problem
– Stochastic	linear	system
– Probabilistic	intersection

• 3	Algorithms
– Basic	(SGD,	stochastic	Newton	method,	stochastic	fixed	point	method,	

stochastic	proximal	point	method,	stochastic	projection	method,	…)
– Parallel
– Accelerated	

• Iteration	complexity	guarantees	for	various	measures	of	success
– Expected	iterates	(closed	form)
– L1	/	L2	convergence
– Convergence	of	f;	ergodic	…
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