Stochastic Reformulations

of Linear Systems:

Algorithms and Convergence Theory

Peter Richtárik

King Abdullah University
of Science and Technology

Modern Convex Optimization and Applications
Workshop in honour of Arkadi Nemirovski's 70 ${ }^{\text {th }}$ birthday
Fields Institute, Toronto
July 4-7, 2017

Arkadi Nemirovski

Professor and Jh. Hunter Academic Chair, School of Industrial and Systems Engineering, Georgia
optimization, operations research, convex optimization, nonparametric statistics
Verified email at isye.gatech.edu - Homepage

Title 1-20	Cited by	Year
LMI Control Toolbox for use with Matlab. 1995. The MATH Works P Gahinet, A Nemirovski, AJ Laub, M Chilali Inc., Natick, MA	5763 *	
Interior-point polynomial algorithms in convex programming Y Nesterov, A Nemirovskii Society for industrial and applied mathematics	5125	1994
Lectures on modern convex optimization analysis, algorithms and engineering applications (MPS/SIAM series on optimization, 2) ABEN-TAL, A NEMIROVSKI	2198 *	2001
Robust convex optimization A Ben-Tal, A Nemirovski Mathematics of operations research 23 (4), 769-805	1998	1998
Robust optimization A Ben-Tal, L El Ghaoui, A Nemirovski Princeton University Press	1916	2009
Robust solutions of uncertain linear programs A Ben-Tal, A Nemirovski Operations research letters 25 (1), 1-13	1595	1999
Problem Complexity and Method Efficiency in Optimization AS Nemirovsky, DB Yudin J. Wiley @ Sons, New York	1365 *	1983
Robust solutions of linear programming problems contaminated with uncertain data A Ben-Tal, A Nemirovski Mathematical programming 88 (3), 411-424	1298	2000
Robust optimization-methodology and applications A Ben-Tal, A Nemirovski Mathematical programming 92 (3), 453-480	999	2002
Adjustable robust solutions of uncertain linear programs A Ben-Tal, A Goryashko, E Guslitzer, A Nemirovski Mathematical Programming 99 (2), 351-376	830	2004
Stochastic approximation approach to stochastic programming A Nemirovski, A Juditsky, G Lan, A Shapiro SIAM Journal on Optimization 19 (4), 1574-1609	800	2009

Google Scholar

Get my own profile

Citation indices	All	Since 2012
Citations	35475	16344
h-index	63	44
i10-index	158	104

A System of Linear Equations

m equations with n unknowns

Assumption: The system is consistent (i.e., a solution exists)

Part I Stochastic Reformulations

P.R. and Martin Takáč

Stochastic Reformulations of Linear Systems: Algorithms and Convergence Theory arXiv:1706.01108, 2017

Stochastic Reformulations of Linear Systems

$n \times n$ pos def
 B, \mathcal{D}
 $A x=b$

distribution over $m \times q$ matrices

1. Stochastic Optimization
2. Stochastic Linear System
3. Stochastic Fixed Point
4. Probabilistic Intersection

Example: $B=$ identity
$\mathcal{D}=$ uniform over $e_{1}, \ldots, e_{m}\left(\right.$ unit basis vectors in $\left.\mathbb{R}^{m}\right)$

Theorem

a) These 4 problems have the same solution sets
b) Necessary \& sufficient conditions for the solution set to be equal to $\{x: A x=b\}$

Reformulation 1:
 Stochastic Optimization

Minimize $f(x) \stackrel{\text { def }}{=} \mathbf{E}_{S \sim \mathcal{D}}\left[f_{S}(x)\right]$

$$
f_{S}(x)=\frac{1}{2}\left\|x-\Pi_{\mathcal{L}_{S}}^{B}(x)\right\|_{B}^{2}=\frac{1}{2}(A x-b)^{\top} H(A x-b)
$$

$$
\mathcal{L}_{S}=\left\{x: S^{\top} A x=S^{\top} b\right\}
$$

$$
H=S\left(S^{\top} A B^{-1} A^{\top} S\right)^{\dagger} S^{\top}
$$

Reformulation 2:
 Stochastic Linear System

Instead of $A x=b$ we solve the preconditioned system:

$$
H=S\left(S^{\top} A B^{-1} A^{\top} S\right)^{\dagger} S^{\top}
$$

$$
\text { Solve } B^{-1} A^{\top} \mathbf{E}_{S \sim \mathcal{D}}[H] A x=B^{-1} A^{\top} \mathbf{E}_{S \sim \mathcal{D}}[H] b
$$

preconditioner
Instead of $B^{-1} A^{\top} \mathbf{E}[H] A$ we have access to $B^{-1} A^{\top} H A$

Unbiased estimate of the preconditioner

Reformulation 3:

Stochastic Fixed Point Problem

$$
\text { Solve } x=\mathbf{E}_{S \sim \mathcal{D}}\left[\Pi_{\mathcal{L}_{S}}^{B}(x)\right]
$$

Projection in B-norm onto $\mathcal{L}_{S}=\left\{x: S^{\top} A x=S^{\top} b\right\}$

Reformulation 4: Probabilistic Intersection Problem

Find $x \in \mathbb{R}^{n}$ such that $\mathbf{P}\left(x \in \mathcal{L}_{S}\right)=1$

$$
\mathcal{L}_{S}=\left\{x: S^{\top} A x=S^{\top} b\right\}
$$

Sketched system
S discrete

$$
\left\{x: \mathbf{P}\left(x \in \mathcal{L}_{S}\right)=1\right\}=\bigcap_{S} \mathcal{L}_{S}
$$

Part II
 Randomized Algorithms

Viewpoint 1: Stochastic Optimization

Stochastic Gradient Descent

A key method in machine learning

Stochastic "Newton" Descent

Stochastic Proximal Point Method

Viewpoint 3: Stochastic Fixed Point Method

Stochastic Fixed Point Method

> Stochastic fixed point
> mapping

$$
x^{t+1}=\omega \prod_{\mathcal{L}_{S}}^{B}\left(x^{t}\right)+(1-\omega) x^{t}
$$

Relaxation parameter

$$
S \sim \mathcal{D}
$$

Part III Complexity

Basic Method

Basic Method: Complexity

$$
\mathbf{E}\left[U^{\top} B^{1 / 2}\left(x^{t}-x^{*}\right)\right]=(I-\omega \Lambda)^{t} U^{\top} B^{1 / 2}\left(x^{0}-x^{*}\right)
$$

```
stepsize / relaxation parameter
```

$$
\begin{gathered}
W=B^{-1 / 2} A^{\top} \mathbf{E}_{S \sim \mathcal{D}}[H] A B^{-1 / 2}=U \Lambda U^{\top} \\
H=S\left(S^{\top} A B^{-1} A^{\top} S\right)^{\dagger} S^{\top}
\end{gathered}
$$

Basic Method: Complexity

Convergence of Expected Iterates
$t \geq \frac{1}{\lambda_{\text {min }}^{+}} \log \left(\frac{1}{\epsilon}\right) \quad \stackrel{\omega=1}{\square}\left\|\mathbf{E}\left[x^{t}-x^{*}\right]\right\|_{B}^{2} \leq \epsilon$
$t \geq \frac{\lambda_{\max }}{\lambda^{+}} \log \left(\frac{1}{\epsilon}\right) \stackrel{\omega=1 / \lambda_{\text {max }}}{\square}\left\|\mathbf{E}\left[x^{t}-x^{*}\right]\right\|_{B}^{2} \leq \epsilon$

L2 Convergence
$t \geq \frac{1}{\lambda_{\text {min }}^{+}} \log \left(\frac{1}{\epsilon}\right) \stackrel{\omega=1}{\longmapsto} \mathbf{E}\left[\left\|x^{t}-x^{*}\right\|_{B}^{2}\right] \leq \epsilon$

Parallel Method

Parallel Method

"Run 1 step of the basic method from x^{t} several times independently, and average the results."

> i.i.d.

$$
x^{t+1}=\frac{1}{\tau} \sum_{i=1}^{\tau} \phi_{\omega}\left(x^{t}, S_{i}^{t}\right)
$$

One step of the basic method from x^{t}

Parallel Method: Complexity

L2 Convergence

$$
\begin{array}{cc}
\tau=1 & \tau=+\infty \\
t \geq \frac{1}{\lambda_{\min }^{+}} \log \left(\frac{1}{\epsilon}\right) \quad \text { or } \quad t \geq \frac{\lambda_{\max }}{\lambda_{\min }^{+}} \log \left(\frac{1}{\epsilon}\right)
\end{array}
$$

$$
\mathbf{E}\left[\left\|x^{t}-x^{*}\right\|_{B}^{2}\right] \leq \epsilon
$$

Accelerated Method

Accelerated Method

$$
S^{t}, S^{t-1} \sim \mathcal{D} \text { (independent) }
$$

$$
x^{t+1}=\gamma \phi_{\omega}\left(x^{t}, S^{t}\right)+(1-\gamma) \phi_{\omega}\left(x^{t-1}, S^{t-1}\right)
$$

One step of the basic method from x^{t}
One step of the basic method from x^{t-1}

Accelerated Method: Complexity

Convergence of Iterates

$$
t \geq \sqrt{\frac{\lambda_{\max }}{\lambda_{\min }^{+}}} \log \left(\frac{1}{\epsilon}\right) \quad\left\|\mathbf{E}\left[x^{t}-x^{*}\right]\right\|_{B}^{2} \leq \epsilon
$$

$$
\text { Basic Method depends on } \frac{\lambda_{\max }}{\lambda_{\min }^{+}} \text {! }
$$

Detailed Complexity Results

Alg.	ω	τ	γ	Quantity	Rate	Complexity	Theorem		
1	1	-	-	$\left\\|\mathrm{E}\left[x_{k}-x_{*}\right]\right\\|_{\mathbf{B}}^{2}$	$\left(1-\lambda_{\min }^{+}\right)^{2 k}$	$1 / \lambda_{\min }^{+}$	$4.3,4.4,4.6$		
1	$1 / \lambda_{\max }$	-	-	$\left\\|\mathrm{E}\left[x_{k}-x_{*}\right]\right\\|_{\mathbf{B}}^{2}$	$(1-1 / \zeta)^{2 k}$	ζ^{2}	$4.3,4.4,4.6$		
1	$\frac{2}{\lambda_{\min }^{+}+\lambda_{\max }}$	-	-	$\left\\|\mathrm{E}\left[x_{k}-x_{*}\right]\right\\|_{\mathbf{B}}^{2}$	$(1-2 /(\zeta+1))^{2 k}$	ζ	$4.3,4.4,4.6$		
1	1	-	-	$\mathrm{E}\left[\left\\|x_{k}-x_{*}\right\\|_{\mathbf{B}}^{2}\right]$	$\left(1-\lambda_{\min }^{+}\right)^{k}$	$1 / \lambda_{\min }^{+}$	4.8		
1	1	-	-	$\mathrm{E}\left[f\left(x_{k}\right)\right]$	$\left(1-\lambda_{\min }^{+}\right)^{k}$	$1 / \lambda_{\min }^{+}$	4.10		
2	1	τ	-	$\mathrm{E}\left[\left\\|x_{k}-x_{*}\right\\|_{\mathbf{B}}^{2}\right]$	$\left(1-\lambda_{\min }^{+}(2-\xi(\tau))\right)^{k}$		5.1		
2	$1 / \xi(\tau)$	τ	-	$\mathrm{E}\left[\left\\|x_{k}-x_{*}\right\\|_{\mathbf{B}}^{2}\right]$	$\left(1-\frac{\left.\lambda_{\min }^{+}\right)^{k}}{\xi(\tau)}\right)$	$\xi(\tau) / \lambda_{\min }^{+}$	5.1		
2	$1 / \lambda_{\max }$	∞	-	$\mathrm{E}\left[\left\\|x_{k}-x_{*}\right\\|_{\mathbf{B}}^{2}\right]$	$(1-1 / \zeta)^{k}$	ζ	5.1		
3	1	-	$\frac{2}{1+\sqrt{0.99 \lambda_{\min }^{+}}}$	$\left\\|\mathrm{E}\left[x_{k}-x_{*}\right]\right\\|_{\mathbf{B}}^{2}$	$\left(1-\sqrt{0.99 \lambda_{\min }^{+}}\right)^{2 k}$	$\sqrt{1 / \lambda_{\min }^{+}}$	5.3		
3	$1 / \lambda_{\max }$	-	$\frac{2}{1+\sqrt{0.99 / \zeta}}$	$\left\\|\mathrm{E}\left[x_{k}-x_{*}\right]\right\\|_{\mathbf{B}}^{2}$	$(1-\sqrt{0.99 / \zeta})^{2 k}$	$\sqrt{\zeta}$	5.3		

Table 1: Summary of the main complexity results. In all cases, $x_{*}=\Pi_{\mathcal{L}}^{\mathbf{B}}\left(x_{0}\right)$ (the projection of the starting point onto the solution space of the linear system). "Complexity" refers to the number of iterations needed to drive "Quantity" below some error tolerance $\epsilon>0$ (we suppress a $\log (1 / \epsilon)$ factor in all expressions in the "Complexity" column). In the table we use the following expressions: $\xi(\tau)=\frac{1}{\tau}+\left(1-\frac{1}{\tau}\right) \lambda_{\text {max }}$ and $\zeta=\lambda_{\text {max }} / \lambda_{\text {min }}^{+}$.

Part IV Conclusion

Contributions

- 4 Equivalent stochastic reformulations of a linear system
- Stochastic optimization
- Stochastic fixed point problem
- Stochastic linear system
- Probabilistic intersection
- 3 Algorithms
- Basic (SGD, stochastic Newton method, stochastic fixed point method, stochastic proximal point method, stochastic projection method, ...)
- Parallel
- Accelerated
- Iteration complexity guarantees for various measures of success
- Expected iterates (closed form)
- L1 / L2 convergence
- Convergence of f; ergodic ...

Related Work

Basic method with unit stepsize and full rank A:

Robert Mansel Gower and P.R.
Randomized Iterative Methods for Linear Systems
SIAM J. Matrix Analysis \& Applications 36(4):1660-1690, 2015

- 2017 IMA Fox Prize ($2^{\text {nd }}$ Prize) in Numerical Analysis
- Most downloaded SIMAX paper

Removal of full rank assumption + duality:

Robert Mansel Gower and P.R.
Stochastic Dual Ascent for Solving Linear Systems
arXiv:1512.06890, 2015

Inverting matrices \& connection to Quasi-Newton updates:

Robert Mansel Gower and P.R.
Randomized Quasi-Newton Methods are Linearly Convergent Matrix Inversion Algorithms arXiv:1602.01768, 2016

Computing the pseudoinverse:

Robert Mansel Gower and P.R.
Linearly Convergent Randomized Iterative Methods for Computing the Pseudoinverse arXiv:1612.06255, 2016

Application in machine learning:

THE END

