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A System of Linear Equations

m equations with n unknowns

n AeR™"  xeR"”, beR™

)
[ !

 Axr = b

Assumption: The system is consistent (i.e., a solution exists)




ormulations

P.R. and Martin Takac

Stochastic Reformulations of Linear Systems: Algorithms and
Convergence Theory

arXiv:1706.01108, 2017




Stochastic Reformulations
of Linear Systems

n X n pos det distribution over m X q matrices
1. Stochastic Optimization
B, D o
A 2. Stochastic Linear System
T =20 3. Stochastic Fixed Point
4. Probabilistic Intersection

Example: B = identity
D = uniform over eq,...,e, (unit basis vectors in R™)

Theorem

a) These 4 problems have the same solution sets
b) Necessary & sufficient conditions for the solution set
to be equal to {z : Az =10}



Reformulation 1:
Stochastic Optimization

Minimize f(z) = Es.p|fs()]

fs(@) = 5lle — T2 ()|} = 5(Az —b) " H(Az — b)

-




Reformulation 2:
Stochastic Linear System

Instead of ACB — b we solve 0 S(STAB_lATS)TST

the preconditioned system:

Solve B_lATESND[H]AZE — B_lATESND[H]b
T E—

preconditioner

Instead of B~1 A" E[H]A we have access to B~1A"HA

Unbiased estimate of the preconditioner



Reformulation 3:
Stochastic Fixed Point Problem




Reformulation 4:
Probabilistic Intersection Problem

Find x € R" such that P(x € Lg) =1

Ls={x : S"Az = S"b}

Sketched system

S discrete - {33 : P(CE - ,CS) — 1} — ﬂS ,CS
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Viewpoint 1:
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~ Stochastic Optimization -




Stochastic Gradient Descent

constant stepsize S ~ 7D
pitl =gt — wV fg(x?)

“stochastic gradient”

A key method in machine learning



Stochastic “Newton” Descent




Stochastic Proximal Point Method




Viewpoint 3: '
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~ Stochastic Fixed Point
_ Method




Stochastic Fixed Point Method







Basic Method




Basic Method: Complexity

E[U"BY?(zt — 2*)] = (I — wA)'U " BY2(2° — %)

stepsize / relaxation parameter

W =B 1Y2ATEg p[H|AB /2 =UAUT

H=S(STAB=1ATS)IST



Basic Method: Complexity

Convergence of Expected lterates

1 1\ wol
t > T log( > m |Elzt —z¥]||f <e

min

> Ames 10g(1) - |El -]} <
— A"

min

L2 Convergence

! log(l) - E [z o[3] <

t >

min



Parallel Method




Parallel Method

“Run 1 step of the basic method from z*

several times independently,

and average the results.”
i.i.d.

= % 22:1 % ($t7 Sf)

\_'_I

One step of the basic method from z*



Parallel Method: Complexity

L2 Convergence




~ Accelerated Method




Accelerated Method

Acceleration parameter St, S'=1 ~ D (independent)
(between 1 and 2)

ot = 90, (2!, ) + (1= )6 (@', S

l_Y_’

One step of the basic method from z?

One step of the basic method from z!~!



Accelerated Method: Complexity

Convergence of Iterates

)\max 1 *
t> =g () W Bl -2 E <o




Detailed Complexity Results

Alg. w y Quantity Rate Complexity Theorem
1 I : [E [z — o] I 1= 2E )7 /N | 43,44, 46
1 1/Amax - |E [z — z+] |5 (1—1/¢)2k 4.3, 44,46
1 m - ||E [xk — .’L'*] ||2B (1 — 2/(C + 1))2k C 43, 44, 4.6
1 1 - E [|lzr — z«||%] (1— ,\gm)k 1/,\%n 4.8
2 1 . E[lox —2l13] | (1= X @ =€) 5.1

At \F
2 1/€(r) - E [llzr — z+[l3] 1= 265 E(T) /A hin 5.1
£(7)
2 1//\rnax - E [”xk — 33*”2]3] (1 - 1/C)k C 51
3 1 —2 | |E[zk — =] |} ( 0. 99>\+ ) \/1/2T 5.3
1+ 10 99>\+ min min
3 1/ e IIE [z — 4] ||2 (1— /0. 99/ 2" NG 5.3
max 1+W k *1 1B '

Table 1: Summary of the main complexity results. In all cases, z. = IIB(xg) (the projection of
the starting point onto the solution space of the linear system). “Complexity” refers to the number
of iterations needed to drive “Quantity” below some error tolerance ¢ > 0 (we suppress a log(1/¢)
factor in all expressions in the “Complexity” column). In the table we use the following expressions:

6(7') = % + (1 - 71_-))‘max and C )\max/)\mm






Contributions

e 4 Equivalent stochastic reformulations of a linear system
— Stochastic optimization
— Stochastic fixed point problem
— Stochastic linear system
— Probabilistic intersection
e 3 Algorithms

— Basic (SGD, stochastic Newton method, stochastic fixed point method,
stochastic proximal point method, stochastic projection method, ...

— Parallel
— Accelerated
* [teration complexity guarantees for various measures of success
— Expected iterates (closed form)
— L1/ L2 convergence
— Convergence of f; ergodic ...
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