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Abstract

Since the late 1950's when quasi-Newton methods first eppeared, they have become one of the most widely
used and efficient algorithmic paradigms for unconstrained optimization. Despite their immense practical success,
there s little theory that shows why these methods are so efficient. We provide a semi-local rate of convergence
for the randomized BFGS method which can be significantly hetter than that of gradient descent, finally giving
theoretical evidence supporting the superior empirical performance of the method,
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Well behaved:

The Problem

1. Self-concordant
2. Strongly convex, Lipschitz
gradient, Lipschitz Hessian

. det
111111 L) =
min f(x)

# parameters / features # training data points
(Allowed to be large) (Assumed to be of reasonable size)



The Problem

min f(x)
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Detour: Randomized 2" Order Methods
in the Big n Regime

Dmitry Kovalev, Konstantin Mishchenko and P.R.
Stochastic Newton and cubic Newton methods with simple local linear-quadratic rates
Adobe NeurlPS 2019 Workshop: Beyond First Order Methods in ML (arXiv:1912.01597, 2019)
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On Second Order Methods "}

and Randomness e
First “2nd Order SGD” method which works even Pt i F‘
when sampling 1 datapoint in each iteration ﬂ
Unlike all first order methods, enjoys (local) linear R e

rate independent of condition number!
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Talk Outline

.  Quasi-Newton Methods

II. Randomized BFGS for Matrix Inversion

Robert M. Gower and P. R.
Randomized Quasi-Newton Updates are Linearly Convergent Matrix Inversion Algorithms
Adobe SIAM Journal on Matrix Analysis and Applications 38(4):1380-1409, 2017

lll. Randomized BFGS for Optimization

Dmitry Kovalev, Robert M. Gower, P. R. and Alexander Rogozin
Fast Linear Convergence of Randomized BFGS
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From Gradient Descent to Newton’s Method

Bgl ~ VZf(ZEk)

[l +h) = Ti(h) = fxy) + (Vf(zr), h) + L(By h, h)

Tkt+1 = Tk + arg }?61]'11%% Ty (h) = 1, — BV f(z1)

B. = a1 Gradient Descent

B ~ (VQf(a:k))_l Quasi-Newton Methods

By = (V2f(zx))

Better approximation
of the Hessian

Newton’s Method



Quasi-Newton Methods:
Secant Equation for Convex Quadratics

Hel Vflx)=Hz+b

flz)=2xz'Hz+b'z+c Q Vif(z)=H
V2f(z)(u —v) = Vf(u) - Vf(v)
u—v=(V2f(z)) " (Vf(u) - Vf(v))
(Vf(uw) = Vi) (V2f(z)™

= (u—wv)"



1 )—|—

(VF(u) = V@) (V2f(x)”

U= Tk+1, V= Tk, L = Tk+1

=(u—v

Secant Equation

(Vf(@rs1) = VI (21) Brg1 = (@1 — o)

Known Unknown matrix Known
vector vector
Desire:

Bii1 ~ (V2f(z11)) "

This can be seen as a system if linear equations with the unknown By

Generally, there will be multiple solutions. Which one to choose?



“Solving” the Secant Equation

=

Ben = arg min B~ Billpw)

e

Weighted Frobenius norm

X[ pewy = [[WY2XW2,

W =0

subject to




Broyden-Fletcher-Goldfarb-Shanno (1970)

J. Inst. Maths Applics (1970) 6, 76-90

‘The Convergence of a Class of Double-rank Minimization Algorithms
1. General Considerations

C. G. Broypen

Computing Cenire, University of Estex,
Wivenhoe Park, Colchester, Essex

[Received 7 March 1969 and in revised form 19 May 1969]

This paper presents a more detailed avalysis of a class of minimization algorithms, whmn
Includes as @& special case the DFP (Davidon-Fletcher-Powel) method,

previously appeared. Only quadratic functions - coosidersd bul particular amnmn
18 paid 10 the magnitude of upon the initisl mateix,
Onmhubo(lha-poulbhuyh-lmolmorm:ohmwdchmnmudlk

A new approach to variable metric algorithms

R. Fletcher

Adonvic Enwgy Roseerch Establistvmast, Haraed, Diskol. Berishivs

sy o ks e i e i ferded el e sk sl

The

e i
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A comses chiss of wabatit (ormsbe

sppravimating mairix b the e
which prncsn thin peeperty bus bees cotablished,

o wmay (rom o siegudariey sl webosmdodars A FORTRAN program bas boen sesind
emraging revain.

extemsindy with
(Received October 1969)

class is tentatively suggest 1. Metivacion
This sapee duals with 1he peottem of mincmisig &
1. Introduction fusction D P X)
PROBABLY 1he best-known al for the i of Aol AN e gradiend yeckee VoF > """“ ook

a function of many variables, where explicit expressions are available for the first
partial derivatives, is that of Davidon (1959) as modified by Fletcher & Powell (1963).
This algorithm has mlny \-mnu. I| is nmph and does not require at any stage the
solution of linear a ic function exactly in a finite
number of sieps and this pﬂ:oeﬂy makes convergence of this algorithm rapid, when
applied to more general functions, in the neighbourhood of the solution. It is,
at least in theory, stable since the iteration matrix H,, which transforms the ith
gradient into the ith step direction, may be shown to be positive definite.

In practice the algorithm has been generally successful, but it has exhibited some
puzzling behaviour, Broyden (1967) noted that H, does not always remain positive
definite, and attributed this 10 rounding errors. Pearson (1968) found that for some
problems the solution was obtained more cficiently if H, was reset to a positive
definite matrix, often the unit mairix, at inlervals during the compultation. Bard (1968)
noted that H, could become singular, attributed this 1o rounding error and suggested
the use of suitably chosen scaling factors as 2 remedy.

In this paper we analyse the more general algorithm given by Broyden (1967), of
which the DFP algorithm is a special case, and determine how for quadratic functions
the choice of an arbitrary affects We i igate how the
successive errors depend, again for quadratic functions, wpon the initial choice of
iteration matrix paying particular attention (o the cases where this is either the unit
matrix or 3 good approximation o the inverse Hessian. We finally give a tentative
explanation of some of the observed experimental behaviour in the case where the
function to be minimized is not quadratic,

2. Basic Theory
Define a quadratic function F(x) by
F(x) = $x"Ax~=b'x+c, @1
%

b BTN
s..xmu T ix ued 1o denote tranipostion. A lype
of b which has achieved coneiserable sacoess 1
‘clving this

dee 10 Davidon (1999), aad simplifisd by Fleicher and
Powel (1963).  The main feature of the VMM is that
an appeorimation # 10 G & kept, and is apdated at
each iteeation wsing the formuta

58 My i
8y Yy @
Whee B - x* v mad y - g g are e changs in
x and £ mads oq 1hat iteration, and superseript * denotes
wues appeapeiste o the sext ileeaticn,  The comrestion
B i mkes as o meltiphe o of & ‘direction of seaech’
& — g chosen by analogy with Newtca's method. so

He U

that

$oas o ukig @
The muliipie » bs taken as the vadse of A which minimaes.
£ M kU o i iiend ksl g

method has & number of
Inearat o, $o Loaie f th SpppamesOny
matris M o isitlialy chines 1o be positive defisite. then

The algorehm has. however, menmenien
Reotuc The e ot Iy . need 16, s0be. he S
probhem of fading w at each iterascn (the ‘linear
search)  This i saually dose by evaleating the fctinn
and gradiess foe a sumber of &fferent valees of A and
interpolasng according o some strategy, u-ml » wff
cienily sccurate misimum is obtaned, Ths & conider-
abe extra computing effort i required. nb.we that for

The Computer Jowrmal  Volumw [3 Number 3 dsgpast J970

caliulating v sod updsting M. (Computing effort s
mest readity measured by the sumber of times # and £

the minisum may noc esisl at 4Bl This can lead at
Wworst 10 undeiected peogram eerces; at besi o a wollku
Youof diflrm gropes for implementing the VMM,
B Tacompatibidey  rewlts. The Sncer
search can also ofton be 3 disadvaneags whes conrmines
e preweat, baume thes the maimure along the Sne
may %ot be fensible, even though 2o constraints hmit the
position of the ultimate solutios. In 1his context, the
Beibilty of being bl 1o generate drecuons of search,
other than by ¢ would alxo bs convenient.

I is impeetans Deselore 1> cotsider whether the
linear wearch subpeoblom can be dapensed witk.  The
impectnece of the linear wanch iv thal it fursishes 2
progerty which enabies finke 1zrinacion (o be proved
for quadratic fuscsions. The find poat n cxamise
therefore is whether this lermngtion cus be proved for
variable metrss algocithms not regairing finess searches,
and based upon updsting formulac other than {1). Now
quumm lumnullon can be proved by m-m-c that

he saccessoe masnces H satisty 2 ) Ity property’
When the Ppction 1 quadeati” tat I aot mly mus H*
sadaly K™y = § u matural property becawe Gy =8),
where § and 8 are a pair of dfferences
from an eadier i .u.-.m Tt is quite cany o show that
there i only one formula for which hereditary propecties
am be provod wihou teing spon liear saarches, and
for which the corrction k 2 in the spece of
Band Hy. Ths formuia i
(3 HyNd — HYI"
L R e
n which the corsection has depmerated to be of rank 1,
and which fias attracted a lot of atiertion in rooces years.
Toe eila was diseorered by a number of workers, A
of efeuncesbeing ivee by rvvdmm Alnu..h
e T o

2]

A Family of Variable-Metric Methods Derived
by Variational Means

ByDonnldGol.dfu‘b

Abstract. A new rank-two voriable-metric method is derived using Greenstadt's varin.
tiosal approsch [Math. Comyp,, this ssue). Like the Davidon-Fletcher-Powell (DFP)
variable-metric method, the new method preserves the positive-definiteness of the ap.

proximating matrix. Together with Greeastadt's method, the new method gives rise to a
ane-pasameter (smily of varisbie-metric nnlboda hat ineludes the DFP aod rank-one
methods as special cames. It i Broyden's ane-par family [Math.
Comp., v. 21, 1957, pp. 368-381], Choices lor the mverse of the weighting matrix in the

uMWmdehdthn‘lmdthDV?mdnnkmm

methods direct]

In the prccedmg pupu‘ 161, Gmnukdt daenm two variable-metric methods,
uging a classical lly, two iterative f las are de-
wveloped for updating the matrix My, (i.e., the inverse of the variable metric), where
H, is an approximation to the inverse Hessian G-'(x,) of the function being mini-
mized *

Using the iteration formula

Hiypw=He+ E:

to provide revised estimates to the inverse Hessian at each step, Greenstadt solves
for the ion term B that minimizes the norm

N(E) = Tr (WEWET)

subject to the conditions

L] ET - k)
and
{2) B = o0 — Hun

W is a positive-definite symmetrie matrix and Tr denotes the trace,

The first condition is 8 symmetry condition which ensures that all iterutes
will be symmetric as long as the initial estimate 7 is chosen to be symmetric. The
second condition ensures that the updated matrix /.., satisfies the equation

Huwg=wn
and hence, that the method is of the “quasi-Newton" type [1].

Received June 30, 1909, revised August 4, 1669,
AMS Swbject Classifiontions, anny 30, saomdary 10.
Werds and Phrasce.
Davidon methed, rank-oe farmniss,
* The readec is referved to Greenstadt’s paper (6] fur o more detailed discwssion of variable-
motric methods and for definitions of some of the terms wswd hare,

23

varisble-metrie, variational methods,

MATHEMATICS QI COMPUTATION, VOLUME 24, Nussex 111, Juy, 1970

Conditioning of Quasi-Newton Methods for Function
Minimization

By D. F. Shanno
nn.u:. Q..dn.-mmmmmmmmk@au

umuwmnm-afnmnonhnh:mmnmwAmd
of the new

corssderations to keown -uhoh.

L Introduction. Newton's method for minimizing a function f(x), x an n-vector,
is to generate a sequence of points,
o N S L) s
where g = TF(x™), J* = [#°f/dx.dx, the Hessian matrix of F evaluated at
x"', and " is an appropriately chosen scalar, Quasi-Newton methods use an initial
estimate and computational Nnoqwmmm H"™ 10 [J™]" at each

step ratber than 1 work of evall and inverting J*',
The sequence (1) then becomes
@ R

Here &' is chosen to minimize f along —H™g"™. Some well-known technigues of
this type are the Fletcher-Powell modification of Davidon’s method [1), [2], Broyden
methods [3), (10}, the Barnes-Rosen method [4], (5], and Goldfarb’s method [11].

The Fletcher-Powell and Barnes-Rasen methods share the computstionsl feature
that, if {(x) is a positive definite quadratic form, the sequence (2) converges in n
iterations. This feature is also true of Broyden's method defined in [10}, but not of
those devised in [3] (see [6]).

Further, the Fletcher-Powell technique guarantees that the matrix, H™, will
always be positive semidefinite, expediting the search for o’ at each step.

‘This peper will develop a family of matrices, H™, as a function of a scalar param-
eter, 1, all of which can be shown to possess the quadratic convergence property of
the Fletcher-Powell and Barnes-Rosen techniques. [t will further be shown that both
the Fletcher-Powell and Barnes-Rosen matrices are special cases of this parametric
family, and that pasitivity depends only on proper choice of the parameter.

A problem which arises in connection with quasi-Newton methods oocurs when
lhvmﬂknei,guvsluofﬂ“'gmwm mhu:»dkdmndithningptoun.

R«»d March 14, 1969, revieed January 22

Copyright & 1971, American Madtesatical Society
647



Issues with Theoretical Analysis
of Quasi-Newton Methods

Virtually all previous analyses rely on ~ _ A
o et al=<B, ' < LT  Vk

(assumed or proved) bounds of the type:

The analysis then proceeds similarly to analysis of GD

Rate depends on the condition number

™|

e Can be astronomical! Much worse (by many orders of magnitude!) than

the condition number of GD.
* Analysis does not benefit from what QN methods are all about: “better

estimation of the inverse Hessian”.



Issues with Theoretical Analysis
of Quasi-Newton Methods

Despite 50+ years of history,
theoretical understanding of Quasi-Newton
methods is very weak!



Robert M. Gower and P. R.
Randomized Quasi-Newton Updates are Linearly Convergent Matrix Inversion Algorithms
SIAM Journal on Matrix Analysis and Applications 38(4):1380-1409, 2017
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RANDOMIZED QUASI-NEWTON UPDATES ARE LINEARLY
CONVERGENT MATRIX INVERSION ALGORITHMS"

ROBERT M. GOWER' AND PETER RICHTARIK'

Abstract. We develop and nnalyoe a brosd family of stochastic/randomaed algorithms for
caleulating an approximate inverse matrix. We abo develop specialized varlants maintaining sym-
metry or positive definiteness of the iterates.  All methods in the family converge globally and
Huearly (i.c., the exrar decays exponentiully), with explicit rates. I special cases, we obtain stochas-
tic block varinnts of several quasi-Newton updates, incloding bod Broyden (BB), good Broyden
(GB), Powell Broyden (PSB), Davidan-Fletcher-Powell (DFP), and Broyden-Fletcher
Goldfarb-Shanno (BFGS), Ours are the first stochastic versions of these updates shown to converge

to an Inverse of a fixed matrix. Through a dual viewpaint we uncover & fusdamental link betwean
quassi-Newton updates nnd approximate inverss precanditioning. Further, we davelop an sdaptive
variant of randomised block BFGS, whete we modify the the stoch

of the method throaghout the iterative process to achiove faster convergence. By inverting sevaral
matrices from varied applications, we demonstrate that adaptive randomized BFGS (AdaRBFGS) Is
highly competitive when compared to the Newton-Schulz method, & minimal residusl method and
direct inversion method based on a Chalesky decompasition. In particular, on large-seale problems
our method outperforns the standard methods by arders of magnitade at cakulatiog sn i
inverse. Development of efficient methods for estimating the lnverse of very large matrices is o much

needed tool for prevonditioning and variable metric optimization methods in the advent of the big
data eva.

Koy words. matrix Inversion, stochastic methads, iterative methods, quasi-Newton, BFGS,
stochastic convergence

AMS subject classifications. 15A04, 90CS3, 68W20, GSNTS, G5FA5, 65Y20, 68025, 68 W40

DOL. 10,1157/ 1601062063

1. Introduction. Matrix inversion is a standard tool in numerics that is noeded,
for instance, in computing a projection matrix or a Schur complement,, which are com-
monplace caleulations. When only an approximate inverse is required, then iterative
methods are the methods of choice, for they can terminate the iterative process when
the desired accuracy is reached. This can be far more efficient than using a direct
method. Calculating an approximate inverse is a much needed tool in precondition-
ing [33], and, if the output is guaranteed to be positive definite, then it can be used
to design variable metric optimization methods. Furthermore, iterative methods can
make use of an initial estimate of the inverse when available.

The driving motivation of this work is the need to develop algorithms capable of
computing an approximate inverse of very large matrices, where standard techniques
take an exorbitant amount of time or simply fail. In particular, we develop a family
of domized /stochastic hods for i ing & matrix, with specialized variants
maintaining symmetry or positive definiteness of the iterates, All methods in the
family converge globally (i.c., from any starting point) and linearly (i.e., the error
decays exponentially), We give an explicit expression for the convergence rate,

*Recelved by the editors Febraary 19, 2016; acoepted for publication (in revised form) by M. P.
Friedlander Septesnber 19, 2017; published electronically Nevember 14, 2017

htep: / {www siam.org/ journals,/simax /58-4/M106:205 html

Funding: The work of the second suthor was supported by the EPSRC grant EP/K02325X/1,
Accelerated Coordisate Descent Methods for Big Data O und the EPSRC P
EP/N005538/1, Randomized Algorithma for Extreme Conver Optimization

ISehool of Mathematics, The Muxwell Institute far Mathematical Sciences, University of Edin-
burgh, Edi EHA 3FD, UK i peter richtarikfed ac uk).
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RANDOMIZED QUASI-NEWTON UPDATES ARE LINEARLY
CONVERGENT MATRIX INVERSION ALGORITHMS*

ROBERT M. GOWER! AND PETER RICHTARIK'

Abstract. We develop and analyze a broad family of stochastic/randomized algorithms for
calculating an approximate inverse matrix. We also develop specialized variants maintaining sym-
metry or positive definiteness of the iterates. All methods in the family converge globally and
linearly (i.e., the error decays exponentially), with explicit rates. In special cases, we obtain stochas-
tic block variants of several quasi-Newton updates, including bad Broyden (BB), good Broyden
(GB), Powell-symmetric-Broyden (PSB), Davidon—Fletcher—Powell (DFP), and Broyden—Fletcher—
Goldfarb—Shanno (BFGS). Ours are the first stochastic versions of these updates shown to converge
to an inverse of a fixed matrix. Through a dual viewpoint we uncover a fundamental link between
quasi-Newton updates and approximate inverse preconditioning. Further, we develop an adaptive
variant of randomized block BFGS, where we modify the distribution underlying the stochasticity
of the method throughout the iterative process to achieve faster convergence. By inverting several
matrices from varied applications, we demonstrate that adaptive randomized BFGS (AdaRBFGS) is
highly competitive when compared to the Newton—Schulz method, a minimal residual method and
direct inversion method based on a Cholesky decomposition. In particular, on large-scale problems
our method outperforms the standard methods by orders of magnitude at calculating an approximate
inverse. Development of efficient methods for estimating the inverse of very large matrices is a much
needed tool for preconditioning and variable metric optimization methods in the advent of the big
data era.

Key words. matrix inversion, stochastic methods, iterative methods, quasi-Newton, BFGS,
stochastic convergence

AMS subject classifications. 15A09, 90C53, 68W20, 65N75, 65F35, 65Y20, 68Q25, 68W40
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Matrix Inversion: The Problem

. . d
Approximate the inverse of H € 8¢



Hessian (a symmetric positive
definite) matrix whose inverse we
want to approximate

“Unknown” variable we want
to find (the inverse)

Unique solution: B

Identity matrix

—H!




Sketched System aka Random Secant Equation
H-B=1

G Random matrix
dXT
Random Secant Equation SeR

S'" " HB=S'.1I
Classical Secant Equation

(Vf(zrt1) — Vi(zr) B = (zpi1 —x) "



000

Classical vs Random Secant Equation

Classical

(VF(@re1) = V() B = (wppr — )7

1 equation per column of B

B = H~! may not be a solution

Does not need access to H

Equations are
deterministic and adaptive

Random
S'" - HB=S'-1I

7 equations per column of B
S ¢ RIXT T€{1,2,...}

B = H ! is a solution

Needs access to H

Equations are
random and stationary

000



Three Equivalent Formulations
of Randomized BFGS



RBFGS: Primal Formulation (Sketch & Project)

Bin = arg_min [|B Byl

Weighted Frobenius norm
def
Xllrew) = [[WH2XW2],

W=H

subject to




RBFGS: Dual Formulation (Constrain & Approximate)

: 1
= ar min HB — H H
- gBeRdxd Y ERAX T F(H)

subject to B = .—|—

ot o

Inverse Hessian




RBFGS: Explicit Solution

By = 6 -+ (- G B 0 - HED

Hessian whose inverse
we want to approximate




Three Equivalent Formulations of RBFGS

Primal

(Sketch & Project)

strent isfyi < MHessian
Bryi = arg Ble];ixp"d B - Bk”F(H)
subject to STHB = 8]

Weighted Frabenius norm
BB/ & W
Enforcing symmetry

Random secant equation

Dual

(Constrain & Approximate)

Closest matrix to the inverse Hessian Inverse Hessian
belonging to a certain random affine space

B = 3I‘EB€W}},11\1}€R“, “B - H_l”F(H)

subject to B=B; + YSLT. R

Current estimate of the inverse Hessian Symmetric rank- 2 update

Explicit Solution

ind af
. umurﬂuﬂan Current estimate of the inverse Hesslan
Bi=H'

Bry: = G + (1 - GeH) B (1 - HGy)

Hessian whose inverse
‘we want to approximate

G, %5, (s]Hs.) " s]




Randomized BFGS for Matrix Inversion

Matrix H &€ Si whose inverse we want to find

B,.: = RBFGS(Bs, H,S,)

Any initial matrix Bg € Sfil_

Random matrix S;, € R?*" sampled from D



Convergence Rate
of RBFGS



RBFGS: Convergence Rate

Theorem (Gower-R, 2017)

— 112 _
B |[|Br — H[f gy | < (1= 0)* [Bo — B[

p E Ain (Bsp [HY2S (STHS) ' STHY/?)|)

0<p<i  SeRMT



Dmitry Kovalev, Robert M. Gower, P. R. and Alexander Rogozin
Fast Linear Convergence of Randomized BFGS
arXiv:2002.11337, 2020




From Matrix Inversion to Optimization

Compute H™! E> min f(x)

rERA

T, = argmin, f(x)



Algorithm: RBFGS for Optimization

Any initial matrix Bg € Si n Random matrix S; € R9X7
Goal: By, =~ (Vf(z)) " sampled from D

Try1 = Tk — BV f(2k)

B,.1 = RBFGS(By, Hy, S;)

RBFGS was (semi) heuristically applied to optimization in

Robert M. Gower, Donald Goldfarb and P. R. Now the matrix is Changlng!

Stochastic Block BFGS: Squeezing More Curvature out of Data .
idoie ICML 2016 H; = V*f(zy)



Fast Linear Convergence of Randomized BFGS

ﬁ Dmitry Kovalev, Robert M. Gower, Peter Richtdrik and Alexander Rogozin
Adobe

arXiv:2002.11337, 2020

Three Theorems

H Result

Local linear convergence
Theorem 1

Tk = T, By = (V2f(2.)) 7

Assumptions

Self concordance

Local linear convergence

f(og) = f(z4), Br = (V2 f(24)) !

Theorem 2

Superlinear convergence
Theorem 3 with probability 1

VI @k = () =0

Strong convexity
Lipschitz gradient
Lipschitz Hessian







Theorem 1

If f is self-concordant and _, then

E[®)] < (1-2)" @




0<I<¢/(t) <uforallteR

RBFGS can be Better than GD #10) = @ fom sl €1
| A=lar,...,an] € RIx"
Generalized linear models:  f(x) = — > ¢ (a] x) A
Definition (SVD Sketch) -
A=TUxV' D is defined by:
Uomicd Semi@  yegea  Prob (Sk = ;U) = é for i=1,2,...,d

Corollary of Theorem 1

RBFGS with SVD sketch converges with rate (1 — B)k, where p >

i1

2 u d
. k - [ O-r2nin(A)

GD converges with rate (1 — pap)”, where pap = + =3 A)

max






Theorem 2

,u strongly convex and




Experiments



Convex Quadratic with Hilbert Hessian
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Convex Quadratic with Hilbert Hessian
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Chang & Lin (2011)

Binary Classification on LIBSVM Data

Rd
rE i=1

1021 B | _ _ _ —®— gauss_200 _
2 i el = == coord_200
—a&— svd_200
10714 -~ bfgs
-~ nesterov
1074 14—
107 1—
10—10 - !
10-13- !
6 Sb 160 15")0 260 2%0 360
Time, s
gisette
A=10""1
n = 6,000; d=>5,000

k=1.2x10%

Error

min {f(:r:) = % Zlog (14 exp (=b; (as, x))) + %IIwH%}

-@~ gauss_500
" =~ coord_500
10% 4+ —— svd_50
-~ bfgs
10-34 ~#—- nesterov
10-°
107°% 4—
10—12 - !
10-15
I
0 10 20 30 40 50 60 70
Time, s

colon-cancer

A=10"1
n=62; d=2,000
Kk =9.6 x 103



= 10° - : 10° 4
101 —e— size=l —— size=1 10-! - sizem1 —@- gouss_S0
~— size=3 10- - sizew3 e sizem2 10-2 e :’:a”
102 —&— size=5 —&— size=5 102 —k— size=5 - bigs
—— size=10 10+ —— size=10 —»— size=10 104 —#- nesterov
10°% ~— sizem50 —— size=50 10-°% —~+— size=50
107 -=— size=100 106
& 107 s g 107 g
& 5 107 & 5,
. 107
107 10-0 10-°
=10
10-1 1017 107424 10
10-1 101 10 1074
0 2 4 6 8 10 12 0 2 4 . 8 10 12 14 0 2 4 6 8 0 12 14 0.0 05 10 15 20 25
Time, s Time, s Time, s Time, s
Fi 3:a%a; A\ =103 29,159;d = 123 3.5-103
. . — . c— . cne— . —
.
1gure 3: a9a; TN ; : 'y .
1077 4 - size=1 107 —— size=1 10-1 4 8- gauss_40
= s ~se~ coord_40
-3 szeus Hduay 1074 e~ svd_40
10 —— size=10 10-? —4— Size=10 10-* - bigs
—»— size=40 —»— size=d0 -~ nesterov
10°° —4— size=50 10 —— size=50 16°5 107
s 1077 5 8 5
& & 107 5 1077 5 10
10"°
10 10 107"
10-)!
10-12 o1 101 107
0 5 10 15 20 25 30 0 20 ) 60 80 0 2 4 5 8 10
Time, s Time, s Time, s Time, s

(a) gauss (b) coord (c) svd (d) methods compared
Figure 4: covtype; A = 1073; n = 581,012; d = 54; k = 1.9 - 103






Summary

* Randomized BFGS was introduced
* by Gower & R (arXiv 2/2016; SIMAX 2017) for matrix inversion
* by Gower-Goldfarb-R (arXiv 3/2016, ICML 2016) for optimization

* We established local linear convergence rate of RBFGS
* Theorem 1: self-concordant functions
* Theorem 2: smooth and strongly convex functions
* Theorem 3: superlinear convergence

* First analysis of any quasi-Newton method (RBFGS) which shows
improvement on GD
* Novel Lyapunov style analysis
* Convergence of inverse Hessian estimates (theoretical benefits!)
* Convergence of itearates & function values
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Handles big n regime by
taking (randomized) subspace
Newton steps in the dual.

d Regime

Zheng Qu, Peter Richtarik, Martin Taka¢ and Olivier Fercoq
SDNA: Stochastic dual Newton ascent for empirical risk minimization
ICML 2016

Superlinear speedup in
minibatch size.

Robert M. Gower, Donald Goldfarb and Peter Richtarik

Stochastic block BFGS: squeezing more curvature out of data

ICML 2016 Work used to motivate this talk

Robert M. Gower and Peter Richtarik

Randomized quasi-Newton updates are linearly convergent matrix inversion algorithms
SIAM Journal on Matrix Analysis and Applications 38(4):1380-1409, 2017

Robert M. Gower, Filip Hanzely, Peter Richtarik and Sebastian Stich
Accelerated stochastic matrix inversion: general theory and
speeding up BFGS rules for faster second-order optimization
NeurlPS 2018

First accelerated quasi-Newton
matrix inversion rules



Big d Regime

Nikita Doikov and Peter Richtarik
Randomized Block Cubic Newton Method
ICML 2018

Robert M. Gower, Dmitry Kovalev, Felix Lieder and Peter Richtarik
RSN: Randomized Subspace Newton
NeurlPS 2019

Filip Hanzely, Nikita Doikov, Peter Richtarik and Yurii Nesterov
Stochastic Subspace Cubic Newton Method
arXiv:2002.09526, 2020 (ICML 2020)

Dmitry Kovalev, Robert M. Gower, Peter Richtarik and Alexander Rogozin

Fast Linear Convergence of Randomized BFGS
arXiv:2002.11337, 2020

Best rates for
(randomized) subspace
Newton methods

Work presented in this
talk
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