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Part 1
Introduction



Training a Federated Learning Model

rERA

of 1
min f(z) = - > fi()
i—1

Loss on data D; stored on device ¢

# model parameters / features :
# devices fi(z) = Eeup, fe(x)

Heterogeneous data regime:
The datasets Dy, Ds,--- , D, are allowed to be different



3 machines

DGD: Distributed Gradient Descent
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3 machines

DCGD: Distributed

Gradient Descent
1 T
gt = gt — g ZC’ (Vfi(z"))
=1 /,

Contractive compression operator
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However, DCGD Does Not Work in General!
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] Example 1 Consider n=d =3 and define
. 1 1 1
: h@ = (@) +7lall;,  fole) =G0+ Tlally,  fae) = (e,0) + 7 llall,
@
‘: where a = (—3,2,2), b= (2,-3,2) and ¢ = (2,2, -3). Let the starting iterate be 2° = (t,t,t), where t > 0. Then
i oy _t oy _t o _t
e o S Vh(") = 5(—11,9,9), V(") = 5(9, -11,9), Vis(a”) = 5(9=9,—11)-

Using the Top-1 compressor, we get C(V f1(z°)) = £(—11,0,0), C(Vf2(z°)) = £(0,—11,0) and C(Vf3(z")) =
£(0,0,—11). The neat iterate of DCGD is

Alexander Beznosikov, Samuel Horvath, Mher Safaryan, and Peter Richtarik

}Q On biased compression for distributed learning

PDE SpicyFL 2020: NeurlPS Workshop on Scalability, Privacy, and Security in Federated Learning B o ()
arXiv:2002.12410, 2020 ‘

3
! =20 - né lZ;C(Vf,(zo)) = (1 + %) z0.



Part 2
Fixing Divergence
via Error Feedback



Error Feedback:
Technique for Fixing the Divergence of DCGD

INTERSPEECH 2014
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Abstract

We show empirically that in SGD training of deep neural net-
works, one can, at no or nearly no loss of accuracy, quantize the
gradients aggressively—to but one bit per value—if the guan-
tization error is carried forward across minibatches (error feed-
back). This size reduction makes it feasible to parallelize SGD
‘through data-parallelism with fast processors like recent GPUs.

We implement data-parallel deterministically distributed
SGD by combining this finding with AdaGrad, automatic
minibatch-size selection, double buffering, and model paral-

proving efficiency for data parallelism are to increase the mini-
batch size and to reduce how much data gets exchanged [8].

‘We focus on the latter and propose to reduce bandwidth by
aggressively quantizing the sub-gradients—to but one bit per
value. We show that this does not or almost not reduce word
accuracies—but only if the quantization error is carried for-
ward across minibatches, i.e. the error in quantizing the gradi-
ent in one minibatch is added (fed back) to the gradient of the
next minibatch. This is a common technique in other areas, such
as sigma-delta modulation for DACs [9], or image rasterization.
It is a key difference to the well-known R-prop method [27].
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Error Feedback

Algorithm 4 EF (Original error feedback)

1: Eachnode: =1,...,n sets the initial error to zero: ¢! = 0

2: Eachnode i = 1,...,n computes w) = C(yV f;(x )) and sends this to the master

3 foxt=0,1,2,. T—ldo

4. Master computes gt =gt — 25Tl

5 forallnodes:=1,...,nin parallel do

6 Compute current error: ¢/ ' = e! + vV f;(2?) — w!

i Compute new local gradient V f; (z'*1)

8 Compute error-compensated (stepsize-scaled) gradient w! ™' = C(c! "' +yV f;(2*1))
9 Send fth to the master

10: end for
11: end for




Error Feedback Theory is Very Limited!

Strong and/or Unreasonable Assumptions

* Bounded gradients

* Bounded compression error
* Single node setup

* Homogeneous data regime

Weak Rates

* No linear rate in the strongly convex regime
* Weak O(1/7?/3) sublinear rate in the nonconvex regime



Error Feedback Theory is Very Limited!

Algorithm sCVX nCVX DIST key limitation
EF / X / bounded gradients;
Stich et al. [2018] sublinear rate in SCVX case
EF-SGD g
Stich and Karimireddy [2019] d . A smglenode ouly
EF .
Ajalloeian and Stich [2020] % 4 - single node only
SignSGD X / X moment bound;
Karimireddy et al. [2019] single node only
: EC-SGD v X / linear rate only
Beznosikov et al. [2020] if Vfi(z*) =0Vi
EC-SGD / X / linear rate only using
Gorbunov et al. [2020b] an extra unbiased compressor
DoubleSqueeze X / v bounded compression error;
Tang et al. [2020] slow O(1/72/3) rate in nCVX case
Qsparse-SGD, CSER / / / bounded gradients;
Basu et al. [2019], Xie et al. [2020] slow O(1/7'/?) rate in nCVX case
EC-SGD X y. st bounded gradients;

Koloskova et al. [2020] slow O(1/72/3) rate in nCVX case

Table 1: Known results for first order methods using biased compressors. sSCVX = supports strongly convex
functions, nCVX= supports nonconvex functions, DIST = works in the distributed regime. decentralized
method



Part 3
Solving All Issues via
Error Feedback 2021 (EF21)



Contractive compressor

Towards Error E [lc(@) - 2I?] < (@ - oo
Feedback 2021

T
1=1

Distributed CGD can diverge exponentially

when used with a contractive compressor! Wishful thinking?
A new compressor which handles
Example [Beznosikov et al, 2020]: the errors automatically so that EF

n=d=3, C = Top-1 is not needed!

1 n
ptl =gt — g cheq(Vfi(a:t))
i=1



Compressing a Sequence of Vectors

Input sequence Output sequence

0 — Cseq(vo)

v — Cseq(vl)

What we Want:

a To define Cyeq, use C € B(a) only

a Vanishing compression error

v Cg(0) i ) o 1]



Attempt 1: Naive Idea

Cseq(vt) = C(v")

There is no reason why the distortion
should vanish in the limit

Jim B [[|Cug(0') '] 0



Attempt 2: A Better Idea, A:m:’:n
but with a Problem

t— o0

v* is known by the server

Cseq (V') = v* + C(v* — v¥)

Compression error vanishes in the limit!

E |[|Cucq (o) = o[ [v] = E [[[o* +€ (0 =v?) = of|* o] < (1 =) " —v*|[* =0

. . Contraction property:
0 The limit vector is not known!

E [C @) - o] < (1= a)o]?



Assumptions:

Attempt 3: Solving the Problem S o

v* is known by the server

Cseq(vt) E>< 4 C (v —><)

o A Coeq (Ut—l)



Markov property:

Attempt 3: SOIVing the PrOblem Cseq(v') depends on Cgeq(vi™1)

Definition (Markov compressor)

Cseq (UO) = C (UO)
Cseq (vt) def Cseq (vt_l) +C (vt — Cseq (vt_l)) o t>1

O Compression error vanishes in the limit!




EF21 = DCGD with Markov Compressor Applied
to the Sequence of Gradients

Algorithm 2 EF21 (Multiple nodes)

1: Input: starting point z° € R%; g? = C(V fi(2?)) fori = 1,..., n (known by nodes and the master);
learning rate y > 0; g° = 2 3°7 | 9 (known by master)
2: fort=0,1,2,...,7 — 1do

3 Master computes z‘t! = z* — yg* and broadcasts z**! to all nodes
4 for allnmodesi =1,..., n in parallel do
5: Compress ct = C(V f;(z!™!) — g¢) and send ¢! to the master
6: Update local state g™ = g¢ + C(V f;(z**1) — g) Markov compressor:
7 end for ’
8 Master computes g't1 = 1 57" gl viagttl =gt + 1577 ¢t T

. df n g} 7 n 7 (] Cseq(v) =C('U)
9: end for C +\ def t—1 7 t—1

a (V) = Coq (v'71) +C (0" —Coeq (v 7)), £21

t __ . t
Equivalent formulation: vt =V fi(z")

1
't =t — 7; cheq(vfi(mt))

1=1



EF21 in the Single Node Setting

Algorithm 1 EF21 (Single node)

1: Input: starting point 20 € RY, learning rate v > 0, g° = C(V f(z?))
2: fort =0,1,2,...,T — 1do

3 gl =gt — ¢t

4 gt =g"+C(VS(E") - gY)

5. end for




Extensions

1. EF21+: A More Aggressive Variant of EF21
2. Handling Stochastic Gradients



Part 4
Theory of EF21



Restricted Equivalence of EF21 and EF

Theorem

C is

e deterministic,
N EF21 = EF
e positively homogeneous, and

e additive.



Convergence of EF21

Strong O(1/T)

Standard assumptions! sublinear rate!
Assumptions Complexity Theorem
fi 1s L;-smooth [ ] f(xo) ) E[GO]
f is lower bounded by f»f E ||Vf ” t T I

fi is L;-smooth
f is lower bounded by finf E 7] < (1—yu)TE [9Y] 2
f satisfies PL condition

Table 2: Summary of complexity results obtained in this paper. Quantities: 1 = PL constant; v = stepsize; G°
= see (14); ¥! = Lyapunov function defined in Theorem %

First linear rate for
Error Feedback!



Part 5
Experiments



Problem and Data

2
f(x) E log 1+exp( i, a:' ‘|‘)‘E
1 + :13
1=1 71=1
Dataset n N (total # of datapoints) d (# of features) IV; (# of datapoints per client)
phishing 20 11,055 68 252
mushrooms 20 8,120 112 406
a9a 20 32,560 123 1,628
w8a 20 49,749 300 2,487

Table 3: Summary of the datasets and splitting of the data among clients.



EF21 and EF21+ Tolerate Higher
Stepsizes than EF

EF21+

10°

10-2

1072
S o
=
> 1074 > 1074
EF k=1;1x EF21; k=1; 1x EF214+; k=1; 1x
: EF; k=1; 8x :: EF21; k=1; 8x :: EFZl:;k-l: 32x \
2 EF; k=1;16 a EF21; k=1; 16 -6 EF21+; k=1;256%
10°¢ ; EF k=1 32: 107° ; EF21; k= 1; 32x 10 ; EF214; k=1; 512x \
EF; k=1; 64 EF21; k=1; 64x EF21+; k=1; 1024%
P Erk=1;128x P EF21k=1:128x B EF21+; k=1;2048x
0 20000 40000 0 20000 40000 0 20000 40000

#bits/n #bits/n #bits/n

Figure 1: The performance of EF, EF21, and EF21+ with Top-1 compressor, and for increasing stepsizes.

Representative dataset used: a%9a. By 1x,2X,4x (and so on) we indicate that the stepsize was set to a
multiple of the largest stepsize predicted by our theory.



EF, EF21 and EF21+ with Best Fixed Stepsizes

phishing mushrooms a9a . w8a
o 100 10° 10
— ol .
-2
e 8 1072 ~ 1072 o 107
O 2 & i
g1 S10- S0+ g 10
EF21; k=1; 16x EF21; k=2; 1024x EF21; k=4; 64x EF21; k=1; 64x
-6 1 k=1;16x - 1 k=2; 64x - s k=4;64x - s k=1;32x
10 % 10 % 10-¢ % 10-¢ %
GD; 1x GD; 4x GD; 2x GD; 4x
0 10000 20000 0 100000 200000 0 20000 40000 0 50000 100000
#bits/n #bits/n #bits/n #bits/n

Figure 2: Comparison of EF21, EF21+ to EF with Top-£ for individually fine-tuned k£ and fine-tuned stepsizes

for all methods.




The END



