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Abstract

‘We develop several new communication-efficient second-order methods for distributed optimization.
Our first method, NEWTON-STAR, is a variant of Newton’s method from which it inherits its fast
local quadratic rate. However, unlike Newton’s method, NEWTON-STAR enjoys the same per iteration
communication cost as gradient descent. While this method is impractical as it relies on the use of certain
unknown parameters characterizing the Hessian of the objective function at the optimum, it serves as
the starting point which enables us design practical variants thereof with strong theoretical guarantees.
In particular, we design a stochastic sparsification strategy for learning the unknown parameters in an
iterative fashion in a communication efficient manner. Applying this strategy to NEWTON-STAR leads to
our next method, NEWTON-LEARN, for which we prove local linear and superlinear rates independent
of the condition number. When applicable, this method can have dramatically superior convergence
behavior when compared to state-of-the-art methods. Finally, we develop a globalization strategy using
cubic regularization which leads to our next method, CUBIC-NEWTON-LEARN, for which we prove
global sublinear and linear convergence rates, and a fast superlinear rate. Our results are supported with
experimental results on real datasets, and show several orders of magnitude improvement on baseline and
state-of-the-art methods in terms of communication complexity.
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The Problem

mip [Ple) = )+ 3ol &

Function f is convex, and has an “average of averages” structure:

n Lo
ma i@
and A > 0is a regularization parameter. Each f; s a function of
the form: fi;(z) = @;(ax). The Hessian of f,; at point z is

Hy(@) = hig(@)agal, hie) i= &lj(ale) )
The Hessian H,(z) of local functions f,(x) and the Hessian H{(z) of
f can be represented as linear combination of one-rank matrices.

Assumptions

We assume that Problem (1) has at least one optimal solution z*.
For all i and j, ;5 is y-smooth, twice differentiable, and its second
derivative ¢f; is v-Lipschitz continuous.

Our goal is to develop a communication efficient Newton-type
method for distributed optimization.

Naive distributed implementation of
Ne

wton’s method

1
Newton’s step: o+ & o (B + M) VPR,

Each node: computes the local Hessian H(2*) and gradient
V fi(a*), then sends them to the server.

Server: averages the local Hessians and gradients to produce H(z*)
and Vf(2%), respectively, adds AL to H(z*) and Az* to V f(a*),
then performs Newton step. Next, it sends ! back to the nodes.
Pros: e Fast local quadratic convergence rate

o Rate is independent on the condition number
Cons: e Requires O(d?) floats to be communicated by each worker
to the server, where d is typically very large

NEWTON-STAR (NS)

Assume that the server has access to coefficients hyj(a*) for all i and
Ju i.e access to the Hessian H(z*)
Step of NEWTON-STAR: 21! =

—(H(a") + A1) VP(zk).

Theorem 1 (Convergence of NS)

Assume that H(z*) = °T for some yr* > 0 and that '+ > 0.
Then for any starting point z° € R, the iterates of NEWTON-
STAR satisfy the following inequality:

<t (5 S o) [

2

Hznl _£‘|

(==t

Pros: o Fast local quadratic convergence rate
« Rate is independent on the condition number
o Communication cost is O(d) per-iteration

Cons: e Cannot be implemented in practice

NEWTON-LEARN

How to address the communication bottleneck?
o Compressed communication
o Taking advantage of the structure of the problem

In NEWTON-LEARN we maintain a sequence of vectors
hf = (... hE,) €R™, “@

forall i = 1,....,n throughout the iterations k > 0, with the goal

of learning the values hy;(a*) for all ¢,
hij(a¥) = hy(x*) as k= +oo. (

Using A = hyy(a*). we can cstimate the Hessian H(z*) via
1

G

~ - ke ke 1< k T
IS DS el O

Compressed learning

R™ s R™
constant

Compression operator: A randomized map C
is a compression operator (compressor) if there exist
w 2 0 such that for all z € R™

E[C(@)] ==, E[IC@)I] < @+ Dllel? ul
Random sparsification (random-r) [1]: Compressor defined
as

Zogou, ®

Cla)="2

where € € R™ is a random vector distributed uniformly at random
on the discrete set {y € {0,1}" : [[y[|o = r}. The variance param-
eter associated with this compressor is w = — 1.

NEWTON-LEARN: NL1

Assumption: We assume that each ,;(z) is convex, and A > 0.

We design a leaming rule for vectors h¥ via the DIANA
trick [2]

Wit = (b e () = 1) ®

where 7 > 0 is a learning rate, and CF is a freshly sampled
compressor by node i at iteration k.

Main properties: o i > 0 for all i j

o update is sparse: [[hf+ — h¥[ly < s, where

s=0(1)

«H' =0
Each node: Computes update b = [ +nCl (hi(a*) — hF)|
and gradient V f,(«%). Then the node broadeasts the gradient, up-
date hf*! — b and data points a;; for which A" — bl
Server: averages the local gradients to produce Vf(2*) and con-
structs HY via (6). Then it performs a Newton-like step:

- ( war)” (VA + 2t , (10)

and finally broadeasts 241 back to the nodes

Pros e Local linear and superlinear rates
© Rates are independent on the condition number
o Communication cost O(d) per iteration

Algorithm 1: NL1: NEWTON-LEARN (A > 0 case)
Parameters: learning rate i > ()
Initialization: = € RY; b, ... h) € RY;
H' = L0 57 Waga) € R
for 0,1, o
Broadcast =" to all workers
for each node i = 1,...,n do
Compute local gradient V f;(x"*
B = [+ nCH(hi(a*) — B Send W fifa®), hf —
and corresponding a;, to server
end

A=t () (%ng(lA>+A1A)

HA = HE 4 LSS Y (R = B aga)
S

end

Convergence theory

The analysis relies on the Lyapunov function
1
nmy R

o=+

where R = max [la, |

Theorem 2. Let each g;; is convex, A > 0, and n < 4.
Assume that ||z — 2|2 < 2oz for all k > 0. Then for
Algorithm 1 we have the inequalities

E[0}] < #faf,
14 =2 IP) e (o 4 1) 220
EEr ek (6n+3) al,

where 0, =

— min g,;} , which is independent on the condi-
tion number

Assumption on [J¥ — 2*|| can be relaxed using the following lemma:
Lemma 1
Assume A is & convex combination of {hy;(2"), ..
for all 4, j and k. Assume [|2° — o*|[2 < A7 Then
2
2R

i)}

<

[|la* — & for all k > 0.

It is easy to verify that if we choose h; = hi;(z"), use the random
sparsification compressor (8) and 7 < iy, then hf is always a
convex combination of {hy;(x?), ..

o
s hy (@)} for k> 0.

NEWTON-LEARN: NL2

We additionally develop a modified method (NL2) which handles
the case where P is pi-strongly conves, || < 5, and A > 0.
Pros: o Local linear and superlinear rates
© Rates are independent on the condition number
© O(d) bits are communicated per iteration

CUBIC-NEWTON-LEARN

We also constructed a method (CNL) with global convergence guar-
antees using cubic regularization (3]
Pros:  Local linear and superlinear rates
« Global linear rate in the strongly convex case and
global sublinear rate in the convex case
* Rates are independent on the condition number
* O(d) bits are communicated per iteration

Experiments

(5) a2a, A =10~ (h) a7a, A= 10!
Figure 1-Comparison of NL1, NL2 wih (a). (b) BFGS; (¢, (1) ADIANA (¢)
() DINGO i ters of communication complexity. Comparison of CNL with
(2) (1) DIANA and DCGD in torms of communication complesity
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Embarrassingly Brief Motivation

» Distributed optimization/training is important!
* The rate of all 1st order methods depends on the condition number

* Existing 2nd order methods suffer from at least one of these issues:

* Communication cost in each communication round is prohibitively high
* Convergence rate depends on the condition number

GOAL Develop a communication-efficient distributed

Newton-type method whose (local) convergence
rate is independent of the condition number




# training data points

# machines i
on each machine

n m

1

rERA n 4 m
1=1

1
min ¢ | =) —» ij(ay
=1

Loss function

Pij - R—-R

ML model represented by
d parameters / features

|35 (5) — @l (D) < vls — ]

L2 regularizer
(optional)

A

2
8 |+ Sllal

j-th training data point
on machine i



The Problem: Local and Global Functions

Local function owned by machine i fz (CC)
. BN >
min E — E (a;. ;i) — H:L’ |
xeRd : m :

Global function we want to minimize: F(CL‘)
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NEWTON

L (VZF(xk))_1 VF(z")

Local function owned by machine i:




3 machines

8

-] [-- 0] [-- O]

k+1

j2f1 (xk) € R9xd

NEWTON

Z V2 fi(2") + My

Can be computed
by machine j

sV fi (x’“) € R?

V2 fox

V2 fa(@

k dxd k d —>
)GR ,sz(iv )ER > ‘lzl\ okt — gk
k) e R — -

by e R,V /3@

—

server

561%5{@2;2%@ )) +3 |z||2}

1 n
- > Vfi(z") + Az"
i=1

Can be computed
by machine j

(Ao et n) (S wan )



3 machines

NEWTON I (ESEN

—1
k+1 k 1 - 2 k 1 - k k
" =" — EE V< fi(z®) + M 55 Vi) + A
1=1 1=1
Can be computed Can be computed
by machine j by machine j
f ————
a:kj: ? - i € R4
—) k+1 d o
S e— g -
— —L
5 | B3| — server
el




Local function owne d by machine i: fl (:L')

N EWTO N . SU m ma ry ﬁhﬂ{(igég%@m) +3||w||2}

ion we want to minimize: ()

k1 _ ok (V2F(xk))_1 VF(z*)

Expensive O(d?) worker-master
communication

X
Local quadratic convergence
independent of the condition number










Hessian at the (unknown!) optimum {(1 "y
. o anZwu<a2z>)+2|zu2}
#* = argmin F(z) NEWTON-STAR
F(z)
V2F(z*)
A W —1 , .
gkt = Z V2 fi(x*) + Mg =) Vfila®) + At
n 1=1
We assume this is Can be computed
known! by machine j
f ————
” :Jc’1€ ? — V/i(z*) € RY
(]
E —_— Vf k c Rd —
5 fi S 2(7) > ﬁ " ( Zv2fz +)\Id> < vaz +)\33>
E = I B
=] server
il I




Hessian at the (unknown!) optimum {(1 5y om \
. ;IelliRI}! EZ mZ%J‘(aiTﬂ)) + |$||2}
+* = angonin F(o NEWTON-STAR i)
Global function we want to minimize: ' ()
V2F(z*)
11 n : 1\ —1 |
k+1 k 2 k k
Tt = 2" — —E V< fi(xz™) + M1, —E Vfi(x") + A\
n “ n -
1=1 1=1
We assume this is Can be computed
known! by machine j
fl ————
wn g;k—H ? i i+ € R4
GC) ——— .
=] v ER =] e
© E+1] ¢ .
S v - k+1 eRd —_—
™ — v
5 | B3| — server
el




Local function owned by machine i: f/,, (.’I;)

N EWTON-STAR: %{(%i%i%(a;m)> +%||:1:||2}
Local Quadratic Convergence __——

——

- < oy (}nzf:.) o -

J




N EWTO N -STAR: Su m ma ry miny { (ig;g%(a;@) + ;Hxn“‘}

ion we want to minimize: ()

gt — g (V2F(az*))_1 VF(z")

000

J
. The New Result
Local quadratic convergence From The
independent of the condition number Previous Slide

Cheap O(d) worker-master communication

We do not know the Hessian at the optimum!






Structure of the Hessian ~ ={[-E=5~) i}

ion we want to minimize: ()
Rank-1 matrices formed from the training data vectors
1~ 1 &
2 "o T T
VF(z)= | - E = E :Qpij(aijaj)aijaij + ALy
T “ m <
1=1 =1
Assumption 1
@ij : R = R is convex Assumption 2

(= @f;(t) >0 Vi) N0



N EWTO N VS N EWTO N _STAR min { (ig;g%(a;x)) " ;\Hsz}

ant to minimize: F(x)

NEWTON NEWTON-STAR

Pt = gk (VQF(:vk))_l VFE(zF) J Pt = gk (VZF(x*))_l VF(z*) J

VQF ( Z Zcp a,w 2 Z Zgow(a:jx*)aw )—i—)\Id

d :
Local quadratlc congrgence mdependent oféib\\'e w t
condition number u ondition numbe

O Expensive O(d?) work§r-master comn‘:eﬁd,uced a @ Cheap O(d) wg
put n

pvergence independent of the

-master communication

We do not know the Hessian at the optimum!



Local by machine i: f/,,(x)
. T 1l & Ay e
NEWTON-LEARN s (1) <o)
\ )
| {
Global function we want to minir F(I)

S N (.)—1 VF(z*)

Wish list: - J

local rate independent of condition number




Lea n i ng M ecC h dan iS m i n Compression operator (e.g., sparsification such as Rand-r)
NEWTON-LEARN Y] =t S ELE

E [IICF(W)I°] < (w+1)[]* VA eR™

_ 1
Stepsize (0 <n < o1 Compressing the update!

(inspired by first-order method DIANA)

hk—l—l [hk nck ( ( T k) hk) }_I_

Vector of coefficients giving rise to Hessian

approximation at machine i Projection onto nonnegative orthant
hi) max{z1,0}
I hi max{zs,0}
=] . | €RT = Zh aay # Vifi(a¥) | 2€R™ = [ely =

h¥ max{ 2,0}



NEWTON-LEARN: Local Linear Rate Independent
of the Condition Number!

This is a local result: . 1
\ Rate depends on the | °tePsiZe O0<n= 7=
0 *
ro—x7|| < I : m
| [ 3R compressor only! E[CE(R)] =h VheR

E[ICE (M) < (w+D]A|* vheR™

k
5
E[@ < (1-mind2 2}) @9
2 8
Lyapunov function

of i=[lat = o[ 4 o 2 Sl - (e[ R el as koo

We provably learn
ij







NL2: Handles the non-regularized case

A=0
Convergence
Rate
Method result type rate independent of the Theorem
condition number?
NEWTO'E'ig-)rAR (NS) Te+1 < cr% local quadratic v 2.1
MAX-NEWTON (MN .
» Algorithmi ) Tead < cri local quadratic v D.1
NEWTON-LEARN (NL1) o7 < 07 @ local linear v 3.2
Algorithm 1 Tyl < celfrk local superlinear v 3.2
» NEWTON-LEARN (NL2) o5 < 05 ) local linear / 3.5]
Algorithm 2 rer1 < cO5ry local superlinear v 3.5
A < £ global sublinear X ‘4.3
»CUBIC—NEWTON—LEARN (CNL) Ag < cexp(—k/c) global linear X 4.4
AlgorithmB ok < 9’3“@2 local linear v 4.5
Tyl < celgrk local superlinear v 4.5
Quantities for which we prove convergeine: (i) distance to solution ry := Hmk —z* H, (ii) Lyapunov function

2
<I>'; = “xk —z|| +eqd g Z;”zl(hfj — hij(z” )% for ¢ = 1,2,3, where hy;(z*) = cp;’J(a,;';:c*) (see (5)); (iii) Func-
tion value suboptimality Ay := P(z®) — P(z*)

T constant c is possibly different each time it appears in this tabl CNL: Global convergence via cubic regularization
exact values. (Griewank 1981, Nesterov & Polyak 2006)







Experimental Setup

min —Z Zlog 1+exp( bija, :z;'))+

rERI

A

el

Table 3: Data sets used in the experiments, and the number of worker nodes n used in each case.

Data set # workers n | # data points (=nm) | # features d
a2a 15 2 265 128
a7a 100 16 100 123
a9a 80 32 560 123
w8a 142 49 700 300
phishing 100 11 000 68
artificial 100 1 000 200




Table 2: Comparison of distributed Newton-type methods. Our methods combine the best of both worlds,
and are the only methods we know about which do so: we obtain fast rates independent of the condition
number, and allow for O(d) communication per communication round.

Rate Communication

Method Con\;zeirt';geence inde;?e.ndent of the .cost . slfflt‘(’:::(:lrrlfe
condition number? per iteration
[ShamirDeAtNaEll., 2014] Linear X O(d) Centralized
[Zhang a]u?lidsgi?ao, 2015] Linear r O(d) Centralized
[Reddii??i]li.), 2016] Linear 7 O(d) Centralized
[WangG ;‘? ST 2018] Linear > O(d) Centralized
[Crane arlchlH\lI{Co;(?sta, 2019] Linear X O(d) Centralized
[Zhang [e)? alj., 2020] Local quadratic' ¥ O(nd?) Decentralized
[Zhan]:g)étN:f.%ozo] Superlinear v O(nd) Decentralized
NEQ/}\Q;OVNV;)SILAR Local quadratic v O(d) Centahzed
M':l(;ls\l EVVXII?N Local quadratic V4 O(d) Centmlized
NE\éthigl\‘:;(L)EﬁRN Local superlinear v O(d) Centralized
CUBIC-NEWTON-LEARN Superlinear v o) T

this work

" DAN converges globally, but the quadratic rate is introduced only after O(Lg/uz) steps, where Lo is the Lipschitz
constant of the Hessian of P, and pu is the strong convexity parameter of P. This is a property it inherits from the recent
method of Polyak [Polyak and Tremba, 2019] this method is based on.
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Figure 1: Performance of NL1 (first row) and NL2 (second row) across a few values of r defining the random-r
compressor, and a few values of p defining the induced Bernoulli compressor C,,.
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of NL1, NL2 with Newton’s method in terms of communication complexity.
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Figure 4: Comparison of NL1, NL2 and BFGS in terms of communication complexity.
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Acceleration for compressed gradient descent in distributed and federated optimization
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Figure 5: Comparison of NL1, NL2 with ADIANA in terms of communication complexity.
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! DINGO: Distributed Newton-type method for gradient-norm optimization
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Figure 6: Comparison of NL1, NL2 with DINGO in terms of communication complexity.
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