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Outline of the Talk

Local Training
Brief History of Local Training
5th Generation of Local Training Methods

ProxSkip
GradSkip

Algorithm 1 ProxSkip

1: stepsize v > 0, probability p > 0, initial iterate o € R, initial control variate o € R%, number of iterations 7' > 1

2: fort=0,1,...,7—1do
3 B =x— Y(V(2h) — )

4:  Flip acoin 6; € {0,1} where Prob(6, =1) =p
5.  if6; =1 then

6: Teq1 = prOX%,p(itH - %hu)

7:  else

8: Tip1 = B

9:  endif

10: A1 =he + s(:l?c-u — Z441)

11: end for

< Take a gradient-type step adjusted via the control variate h,
© Flip a coin that decides whether to skip the prox or not

© Apply prox, but only very rarely! (with small probability p)
© Skip the prox!

© Update the control variate h,

N~ local
g1t ~ updates
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ProxSkip: Bounding the # of Iterations

1 is p-convex and L-smooth:
§lle —vll* < Dy(e,) < Flo—vl*
£ is the condition number of f

L 1 1
tzmax{;,P}IOgE i E [0 <e¥y

Theorem:

Iomls
o

Distributed Local Gradient Descent

Bras = et — V@)

#terations Lyapunov function:

1
p = probability of
evaluating the prox L2p2

def
Uy 2 Jloe = 2al® + 75 e —

f(z) - f.
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Optimization Formulation of Federated Learning

# devices /

(4 machines
. def 1
min f(x) = — ) fi(x)
rERA n 4
1=1
# model parameters / features Loss on local data D; stored on device ¢

fi(z) = E¢np, fig(x)

The datasets Dy, ..., D,, can be arbitrarily heterogeneous



Optimization problem:

Distributed Gradient Descent iy s 15510

rz€R4
(Each worker performs 1 GD step using its local function, and the results are averaged)

Worker 1 Worker 2 Worker 3
Receive x4 from the server Receive x; from the server Receive x4 from the server
L1t — Tt T2t — Xt I3t — Tt
1441 =214 — YV i(@1) To 141 = ot — YV fo(Tay) T3 41 = T3 — YV f3(T3)
Server

1 3
Tt4+1 — 5 E g t+1
1=1

Broadcast x¢y1 to the workers



Optimization problem:

Distributed Local Gradient Descent .. =i50

(Each worker performs K GD steps using its local function, and the results are averaged)

Worker 1 Worker 2 Worker 3
Receive z; from the server Receive z; from the server Receive x; from the server
T1t = Tt T2t = Tt I3t — Tt
T1 41 = 21 — YV f1(z1,) To i1 = To s — YV fa(x2,) 3,041 = 3,0 — YV [f3(2s,¢)
T1442 = T1 41 — YV 1(21,641) To 142 = Tot41 — YV fo(22,141) T3142 = T3 141 — YV f3(23,041)
T14+K = T+ k-1 — YV (2104 K1) T2 i+ kK = Toprk—1 — YV fa(T2,t4Kx-1) T3 1+K = T314K—1 — YV f3(23 14 Kx-1)
Server
3
1
LT+ K = g Lit+ K
1=1

Broadcast ;4 x to the workers
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Grigory Malinovsky, Kai Yi and P.R.
Variance reduced ProxSkip: algorithm, theory and application to federated learning
NeurlPS 2022



Brief History of Local Training Methods

Table 1: Five generations of local training (LT) methods summarizing the progress made by the ML /FL community
over the span of 74 years in the understanding of the communication acceleration properties of LT.

Generation(?) Theory Assumptions Comm. Complexity(P) Selected Key References
X — empirical results only LocalSGD [Povey et al., 2015]
1. Heuristic X — empirical results only SparkNet [Moritz et al., 2016]
X — empirical results only FedAvg [McMahan et al., 2017]
5. Homogensous v bounded gradients sublinear FedAvg [Li et al., 2020b]
’ v bounded grad. diversity(¢) linear but worse than GD  LFGD [Haddadpour and Mahdavi, 2019]
3. Sublinear v standard(4) sublinear LGD [Khaled et al., 2019]
’ v standard sublinear LSGD [Khaled et al., 2020]
v standard linear but worse than GD  Scaffold [Karimireddy et al., 2020]
4. Linear v standard linear but worse than GD  S-Local-GD [Gorbunov et al., 2020a|
v/ standard linear but worse than GD  FedLin [Mitra et al., 2021]
R T v/ standard linear & better than GD ProxSkip/Scaffnew [Mishchenko et al., 2022]
’ v standard linear & better than GD ProxSkip-VR [THIS WORK]

(2) Since client sampling (CS) and data sampling (DS) can only worsen theoretical communication complexity, our historical breakdown of the literature
into 5 generations of LT methods focuses on the full client participation (i.e., no CS) and exact local gradient (i.e., no DS) setting. While some of the
referenced methods incorporate CS and DS techniques, these are irrelevant for our purposes. Indeed, from the viewpoint of communication complexity, all
these algorithms enjoy best theoretical performance in the no-CS and no-DS regime.

(b) For the purposes of this table, we consider problem (1) in the smooth and strongly convez regime only. This is because the literature on LT methods
struggles to understand even in this simplest (from the point of view of optimization) regime.

(©) Bounded gradient diversity is a uniform bound on a specific notion of gradient variance depending on client sampling probabilities. However, this
assumption (as all homogeneity assumptions) is very restrictive. For example, it is not satisfied the standard class of smooth and strongly convex functions.

(d) The notorious FL challenge of handling non-i.i.d. data by LT methods was solved by Khaled et al. [2019] (from the viewpoint of optimization). From

generation 3 onwards, there was no need to invoke any data/gradient homogeneity assumptions. Handling non-i.i.d. data remains a challenge from the

point of view of generalization, typically by considering personalized FL models.

Grigory Malinovsky, Kai Yi and P.R.
Variance Reduced ProxSkip: Algorithm, Theory and Application to Federated Learning
NeurlPS 2022



Brief History of Local Training Methods

“No theory”

Daniel Povey, Xiaohui Zhang, and Sanjeev Khudanpur
Parallel Training of DNNs with Natural Gradient and Parameter Averaging
ICLR Workshops 2015

SparkNet: Training Deep Networks in Spark
ICLR 2015

H. Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, Blaise Agliera y Arcas
Communication-Efficient Learning of Deep Networks from Decentralized Data
AISTATS 2017

@ Philipp Moritz, Robert Nishihara, lon Stoica, Michael I. Jordan


https://arxiv.org/search/cs?searchtype=author&query=McMahan%2C+H+B

Brief History of Local Training Methods

“Theory requires data to be similar/homogeneous across the clients”

)
=

Xiang Li, Kaixuan Huang, Wenhao Yang, Shusen Wang and Zhihua Zhang
On the Convergence of FedAvg on Non-IID Data

ICLR 2020
Bounded gradients:

IVfi(z)| <B VzeR Vie{l,2,...,n}

Farzin Haddadpour and Mehrdad Mahdavi
On the Convergence of Local Descent Methods in Federated Learning

arXiv:1910.14425, 2019
Bounded gradient diversity (aka strong growth):

S IVA@IE < CIVI@IF Vo e R
=1



Brief History of Local Training Methods

“Heterogeneous data is allowed, but the rate is worse than GD”

Ahmed Khaled, Konstantin Mishchenko and P.R.
First Analysis of Local GD on Heterogeneous Data

NeurlPS 2019 Workshop on Federated Learning for Data Privacy and Confidentiality, 2019

Ahmed Khaled, Konstantin Mishchenko and P.R.
Tighter Theory for Local SGD on Identical and Heterogeneous Data

AISTATS 2020



Brief History of Local Training Methods

Generation 3: Sublinear

100
—— 1 local step
101 —e— 2 local steps
—~— 4 |local steps
1072 —<— 8 local steps
. —4— 16 local steps
1 107 —— 32 local steps
é 10—4
107>
107°

0 5000 10000 15000 20000
Communication rounds

L2-regularized logistic regression
LibSVM mushrooms dataset



Brief History of Local Training Methods

“Heterogeneous data is allowed, but the rate ay best matches that of GD”

Sai P. Karimireddy, S. Kale, M. Mohri, S. J. Reddi, S. U. Stich, A. T. Suresh
SCAFFOLD: Stochastic Controlled Averaging for Federated Learning
ICML 2020

Eduard Gorbunov, Filip Hanzely and P.R.
Local SGD: Unified Theory and New Efficient Methods

Scaffold

S-Local-GD, Local-GD*

AISTATS 2021
S-Local-SVRG
Aritra Mitra, Rayana Jaafar, George J. Pappas, Hamed Hassani
Linear Convergence in Federated Learning: Tackling Client Heterogeneity & Sparse Gradients
FedLin NeurlPS 2021



Brief History of Local Training Methods
Generation 4: Linear

“Heterogeneous data is allowed, but the rate ay best matches that of GD”
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Brief History of Local Training Methods

“Communication complexity is better than GD for heterogeneous data”

In practice, local training significantly improves
communication efficiency.

However, there is no theoretical result explaining this!

Is the situation hopeless, or can we show/prove that
local training helps?
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ProxSkip: Yes! Local Gradient Steps Provably Lead
to Communication Acceleration! Finally

Konstantin Mishchenko ! Grigory Malinovsky > Sebastian Stich> Peter Richtarik >

Abstract

‘We introduce ProxSkip—a surprisingly simple
and provably efficient method for minimizing the
sum of a smooth (f) and an expensive nonsmooth
proximable () function. The canonical approach
to solving such problems is via the proximal gra-
dient descent (ProxGD) algorithm, which is based
on the evaluation of the gradient of f and the prox
operator of 9 in each iteration. In this work we are
specifically interested in the regime in whi
evaluation of prox is costly relative to

tion of the gradient, which is the case i

plications. ProxSkip allows for the exzfen

where f: R? — R is a smooth function, and ¢: R? —
R U {400} is a proper, closed and convex regularizer.

Such problem are ubiquitous, and appear in numerous ap-
plications associated with virtually all areas of science
and engineering, including signal processing (Combettes
& Pesquet, 2009), image processing (Luke, 2020), data sci-
ence (Parikh & Boyd, 2014) and machine learning (Shalev-
Shwartz & Ben-David, 2014).

The Beginning

seetieoil T Please accept our apologies, our excitement apparently spilled

is the condition number of f, thefaumbe
evaluations is O(y/k log 1/<) only. Our

meeminfesel - gyer 1nto the title. If we were to choose a more scholarly title for

ing a local GD step indepejdently on all
and evaluation of prox coj‘esponds to (e:

wepeiviiael this work, it would be ProxSkip: Breaking the Communication

tive acceleration of fommunication co!

cemierl Barrier of Local Gradient Methods.

whose theoreticg! communication comy

worse than, or/at best matching, that
GD in the het/rogeneous data regime,
a provable 7ad large improvement witl
heterogeng/ty-bounding assumptions.

1. Introdjiction

‘We study/optimization problems of the form
min f(z) + ¢(z), @
z€RL

'NRS, ENS, Inria Sierra, Paris, France 2Comput.er Science,

Kifg Abdullah University of Science and Technology, Thuwal,

di Arabia >CISPA Helmholtz Center for Information Secu-

ty, Saarbriicken, Germany. Correspondence to: Peter Richtarik
<peter.richtarik@kaust.edu.sa>.

RAZ ’
the L; norm (¥(z) = ||z||1), the Ly norm (%(z) = ||z|3),
and elastic net (Zhou & Hastie, 2005). For many further
examples, we refer the reader to the books (Parikh & Boyd,
2014; Beck, 2017).

1.2. Expensive proximity operators

However, in this work we are interested in the situation
when the evaluation of the proximity operator is expensive.
That is, we assume that the computation of prox,,, (the

T Please accept our apologies, our excitement apparently spilled
over into the title. If we were to choose a more scholarly title for
this work, it would be ProxSkip: Breaking the Communication
Barrier of Local Gradient Methods.

backward step) is costly relative to the evaluation of the
gradient of f (the forward step).

A conceptually simple expensive prox-

om regularizers ¢ encoding a

ICML

International Conference
On Machine Learning

Konstantin Mishchenko, Grigory Malinovsky, Sebastian Stich and P.R.
ProxSkip: Yes! Local Gradient Steps Provably Lead to Communication Acceleration! Finally!

ICML 2022



Brief History of Local Training Methods

“Communication complexity is better than GD for heterogeneous data”

Konstantin Mishchenko, Grigory Malinovsky, Sebastian Stich and P.R.
ProxSkip: Yes! Local Gradient Steps Provably Lead to Communication Acceleration! Finally!
ICML 2022

Abdurakhmon Sadiev, Dmitry Kovalev and P.R.

Communication Acceleration of Local Gradient Methods via an Accelerated Primal-Dual
Algorithm with Inexact Prox

NeurlPS 2022

ProxSkip

APDA; APDA-Inexact

Grigory Malinovsky, Kai Yi and P.R.
Variance Reduced ProxSkip: Algorithm, Theory and Application to Federated Learning

ProxSkip-LSVRG NeurlPS 2022

Laurent Condat and P.R.
RandProx: Primal-Dual Optimization Algorithms with Randomized Proximal Updates
arXiv:2207.12891, 2022

) ) [EE

RandProx



Brief History of Local Training Methods
Generation 5: Accelerated

“Communication complexity is better than GD for heterogeneous data”

(
Artavazd Maranjyan, Mher Safaryan and P.R.
10/202 2 GradSkip: Communication-Accelerated Local Gradient Methods with Better
GradSkip Computational Complexity
arXiv:2210.16402, 2022

.

10/2022 Laurent Condat, lvan Agarsky and P.R.
/ Provably Doubly Accelerated Federated Learning: The First Theoretically Successful

Compressed- Combination of Local Training and Compressed Communication
Scaffnew arXiv:2210.13277, 2022

Michal Grudzien, Grigory Malinovsky and P.R.
10/202 2 Can 5th Generation Local Training Methods Support Client Sampling? Yes!
5GCS preprint, 2022



Brief History of Local Training Methods

Total
. . . . Supports
Comm. Local # Local Training Complexity Client Comm. . .
. .. . . Decentralized Key Insight
Acceleration Optimizer Steps (Comm. + Sampling? Compression? Setup?
Compute) )
L 1 L _ First 5th generation local
2/22, ICML 22 © (\/:10g E) GD E - x x training method
Can use more powerful
@) (\/Zlog %) any x x local solvers which take
7/22; NeurlPS 22 . fewer local GD-type steps
Running variance reduced
SGD locally can lead to
7/22, NeurIPS 22 worse VR-SGD worse x x x better total complexity
’ than ProxSkip
@) (\/Zlog %) GD £ _ x x ProxSkip = VR mechanism
7/22 . 1% - for compressing the prox
Workers containing less
o ( ;% IOg %) G D x x x imortant data can do fewer
10/22 local training steps!
Can compress uplink, leads
to better overal
10/22 worse G D worse x x communication complexity
than ProxSkip.
L X X .
10/22 worse any E worse Can do client sampling




Part IV
ProxSkip: Local Training Provably
Leads to Communication Acceleration

ProxSkip: Yes! Local Gradient Steps Provably Lead to Communication Acceleration! Finally!

@ Konstantin Mishchenko, Grigory Malinovsky, Sebastian Stich and P.R.
ICML 2022



Consensus Reformulation

mn
min {f(x) def l E fi (x)} Bad: non-differentiable
xERY n —

Good: Indicator function of a

@ nonempty closed convex set
optimization in R™?

min Zf@ iy —|—¢($1, )

T1,...,Tn ERA

optimization in R?

def |0, ity = =x,,

Y (X1, e, Ty) =

+00, otherwise.



ProxSkip: Bird’s Eye View min f(x) + ¥(x)

rERA

Tiv1 =@ — v (VSf(xe) — hy)

with probability 1 — p do Tii1 = Tyq1 hig1 = hy
1l—p=1

evaluate proxy ,(7)
b

with probability p do

Tiy1 =7 hiv1 =7

p~0



Federated Learning: ProxSkip vs Baselines

Table 1. The performance of federated learning methods employing multiple local gradient steps in the strongly convex regi

# local steps # floats sent stepsize linear rate better
method . .. o # rounds .
per round per round on client ¢ rate? than GD?
GD (Nesterov, 2004) 1 d % / (fj( k) ©
. 1 G2 \@
LocalGD (Khaled et al., 2019; 2020) T d > X @ ( T )
Scaffold (Karimireddy et al., 2020) T 2d L © v O(k) ©
S-Local-GD @ (Gorbunov et al., 2021) T d< # < 2d ® % v
FedLin ® (Mitra et aL,, 2021) T; 2d T,lL v
Scaffnew © (this work) 1 (b d 1 /
D L
for any p € (0, 1] P
Scaffnew © (this work)
(h) 1
for optimal p = —— VK @ L 7

VE
@ This is a special case of S-Local-SVRG, which is a more general method presented in (Gorbunov et al., 2021). S-Local-GD arises as a special case when full gradient
is computed on each client.
® Fed Lin is a variant with a fixed but different number of local steps for each client. Earlier method S-Local-GD has the same update but random loop length.
© The O notation hides logarithmic factors.
@ @G is the level of dissimilarity from the assumption Ly IV fi(=) 1> < G? +2LB? (f(z) — f.), V.
©) We use Scaffold’s cumulative local-global stepsize 7;7 g for a fair comparison.
® The number of sent vectors depends on hyper-parameters, and it is randomized.
® Scaffnew (Algorithm 2) = ProxSkip (Algorithm 1) applied to the consensus formulation (6) + (7) of the finite-sum problem (5).

® ProxSkip (resp. Scaffnew) takes a random number of gradient (resp. local) steps before prox (resp. communication) is computed (resp. performed). What is shown
in the table is the expected number of gradient (resp. local) steps.



ProxSkip vs Nesterov

—— Nesterov
102 —— ProxSkip
“ 104
|
B
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108

0 250 500 750 1000 1250 1500 1750 2000
Communication rounds



ProxSkip + Deterministic Gradients

10° 100
T T DN LR S ST [ —— 1/p=100
102 - . o ] 102 1/p =200
—— 1/p=300
. . —»— |ocal GD . _ Local GD . . 1/p =500
«* 10 —e— Scaffold Scaffold 10
1/p=1000
A —— Scaffnew Scaffnew
éi/ 106 FedLin - FedLin 10
S-Local-GD S-Local-GD
108 108
10-10 10-10
0 100 200 300 400 500 200 400 600 800 1000 0 100 200 300 400 500 600 700
Communication rounds Communication rounds Communication rounds
(a) tuned hyper-parameters (b) theoretical hyper-parameters (c) different options of p

Figure 1. Deterministic Case. Comparison of Scaffnew to other local update methods that tackle data-heterogeneity and to LocalGD. In
(a) we compare communication rounds with optimally tuned hyper-parameters. In (b), we compare communication rounds with the
algorithm parameters set to the best theoretical stepsizes used in the convergence proofs. In (c), we compare communication rounds with
the algorithm stepsize set to the best theoretical stepsize and different options of parameter p.

L2-regularized logistic regression: \ b Rd, b, € {_1’ +1}’ =T /104

1 T 2
flz) = n Z;log (1+exp (=bia; z)) + 5“56” w8a dataset from LIBSVM library (Chang & Lin, 2011)



ProxSkip + Stochastic Gradients

10°

—u— |ocal GD

1 —— ProxSkip:M=15
—e— Scaffold

102 —~— ProxSkip:M=20
—te— Scaffnew : Cocal GD —+— ProxSkip:M=10
+ 104 FedLin Scaffold ProxSkip:M=5
- S-Local-GD . —— ProxSkip:M=1
i Scaffnew s s e
= .
= 10 FedLin
S-Local-GD
108
10~10

0 10000 20000 30000 40000 50000 10000 20000 30000 40000 50000

: ; : 0 500 1000 1500 2000
Communication rounds Communicated rounds

Communication rounds

(a) tuned hyper-parameters (b) theoretical hyper-parameters (c) different number of clients

Figure 2. Stochastic Case. Comparison of Scaffnew to other local update methods that tackle data-heterogeneity and to LocalSGD. In (a) we
compare commnication rounds with optimally tuned hyper-parameters. In (b), we compare communication rounds with the algorithm
parameters set to the best theoretical stepsizes used in the convergence proofs. In (c), we compare communication rounds with the
algorithm parameters set to the best theoretical stepsizes used in the convergence proofs and different number of clients.

L2-regularized logistic regression: \ b Rd, b, € {_1’ +1}’ =T /104

1 T 2
flz) = n Z;log (1+exp (=bia; z)) + 5“56” w8a dataset from LIBSVM library (Chang & Lin, 2011)



Part V
GradSkip: Clients with Less Important
Data can do Less Local Training

Artavazd Maranjyan, Mher Safaryan and P.R.
GradSkip: Communication-Accelerated Local Gradient Methods with Better
Computational Complexity
arXiv:2210.16402, 2022
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10°

arXiv:2210.16402v1 [cs.LG] 28 Oct 2022

n =20, Ly, = 10*

10t 102 103 104

GradSkip: Communication-Accelerated Local Gradient Methods
with Better Computational Complexity

10°

GradSkip

2 ) . . Ratio = 15.24
10° —e— ProxSkip w 2x10
~— GradSkip S —&— ProxSkip (practical)
105 = _ | === Proxskip (theoretical)
21'5 x10 ~— GradSkip (practical)
“ 10°8 £ —-=—= GradSkip (theoretical) :
I S 7 ’
— 1x10
3 o
10l k5
©
© 5x10°
1014 >
I
e 0
106 107 0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000
Communication rounds Communication rounds
Algorithm 2 GradSkip+

1: Parameters: stepsize v > 0, compressors C,, € B%(w) and Cq € B4(2).
2: Input: initial iterate o € R¢, initial control variate ho € R%, number of iterations 7" > 1.
3: fort=0,1,...,7 —1do
o hepr = Vf(z) = T+ 2)Ca (VF(z:) — he)
Zi41 =z —Y(V (@) — hey1)
9t = 5a557Cw (f%t+1 — PIOX, (1 40)y (-’ft+1 -1+ w)ilt+1))

4 © Update the shift Bi,t via shifted compression
5

6

7o Ti41 = Tep1 — VGt ¢ Update the main iterate x; ;
. N

9:

< Update the iterate Z; ; via shifted gradient step

¢ Estimate the proximal gradient

hiy1 = hit1 + m(xtﬂ — :i‘t_|_1) ¢ Update the main shift hz‘,t
end for




The End



Appendix A
Consensus Reformulation
of Federated Learning



Optimization Formulation of Federated Learning

n # devices /
machines
. def 1
min f(x) = — ) fi(x)
rERA n “
1=1
# model parameters / features Loss on local data D; stored on device

fi(z) = E¢np, fig(2)

The datasets Dy, ..., D,, can be arbitrarily heterogeneous




Consensus Reformulation

mn
min {f(x) def l E fi (x)} Bad: non-differentiable
xERY n —

Good: Indicator function of a

@ nonempty closed convex set
optimization in R™?

min Zf@ iy —|—¢($1, )

T1,...,Tn ERA

optimization in R?

def |0, ity = =x,,

Y (X1, e, Ty) =

+00, otherwise.



Consensus Reformulation

n
. def 1
min {f($) — Z fz (x> } Bad: non-differentiable
zER "

: Good: proper closed convex
optimization in R™?

min Zf@ iy —|—¢($1, )

T1,...,Tn ERA

optimization in R?

Y (z1,...,2,) : R" = RU {400}
is a proper closed convex function

epi(v) = {(z,t) | ¥(z) <t)  The epigraph of ¢ is a closed and convex set



Appendix B
Proximal Gradient Descent



The epigraph of 9 is a closed and convex set

Three Assumptions

epi(y) € {(z,t) € R x R | () < ¢)

min f(x) +(x)

rceRA

° f is p-convex and L-smooth: ° Y : R? - RU {400} is proper, closed, and convex

eyl < Dy(e.y) < &z — o © v is proximavie

i . Rd d
Bregman divergence of f: The proximal operator prox,, : R® — R® defined by

Dy(z,y) = f(z) - fy) = (VS(@),z — y) prox,,(z) < arg min (wu) b2l x||2)

u€ER4

can be evaluated exactly (e.g., in closed form)



Key Method: Proximal Gradient Descent

proximal operator:

e : 1
prox,, () ' arg min (¢(u) + §||u — :c||2)

wERd stepsize

xe =V f(x¢)
I_'_l

gradient operator

r— x—yVf(x)



Proximal Gradient Descent: Theory

f is pu-convex and L-smooth:

Lz —y||? < D¢(x,y) < 2|z — y||?

% is the condition number of f

Theorem:

8> Flogz > lax— &l <elzo — &l

(for stepsize v = )

# iterations def

Error tolerance Tyx = arg affel]lg% f(z) +¥(x)




Appendix C
The ProxSkip Algorithm



What to do When the Prox is Expensive?

Can we somehow get away with
fewer evaluations of the proximity operator
in the Proximal GD method?

Approach 1 Approach 2

(ProxSkip)

<¢' We’'ll skip MANY prox evaluations!
‘V’ The method is implementable!

<V’ We’ll skipp ALL prox evaluations!

The method is NOT implementable!

Serves as an inspiration for Approach 2




Approach 1:
Simple, Extreme but
Practically Useless Variant



W

Removing 1) via a Reformulation

h E Vf(CB*)

z, & arg min f(x) + ¥ (x)
z€RM

min f(x) — (hy, x)

rERA

x, 1s a solution of the above problem!

By the 1st order optimality conditions, the solution satisfies Vf(z) — Vf(zx) =0

We do not know hy, = V f(z,)!



Apply Gradient Descent to the Reformulation

he & VF(zy)

z, = arg min f(x) + ¥(x)
rEeR

Tiv1 = Tr — v (Vf(xe) — hy)

<« ) We do not need to evaluate the prox of ¢ at all!

<x> We do not know h, and hence can’t implement the method!



Idea: Try to “Learn” the Optimal Gradient Shift

Desire: h; — h,

Tip1 = ¢ — ¥ (Vf(@r) — hy)

0 Perhaps we can learn h, with only occasional access to 17




Approach 2:
The ProxSkip Method



ProxSkip: The Algorithm (Bird’s Eye View)

Tiv1 =@ — v (VSf(xe) — hy)

with probability 1 — p do Tii1 = Tyq1 hig1 = hy
1l—p=1

evaluate proxy ,(7)
b

with probability p do

?

Li+1 = - I

hii1="1
. t+1




ProxSkip: The Algorithm (Detailed View)

Algorithm 1 ProxSkip

1: stepsize v > 0, probability p > 0, initial iterate zq € RY, initial control variate ~( € R%, number of iterations 7' > 1
2: fort=0,1,..., T — 1do

3:

10:

N A A

Teo1 =x — Y(Vf(zs) — hy) o Take a gradient-type step adjusted via the control variate h;
Flip a coin 6; € {0,1} where Prob(6; = 1) =p ¢ Flip a coin that decides whether to skip the prox or not
if 6; = 1 then

Tt4+1 = ProXz,, (£t+1 — %ht) < Apply prox, but only very rarely! (with small probability p)
else

Tiy1 = i't_|_1 1 Sklp the pI'OX!
end if
hii1 = hy + %(.’L‘t+1 — Ztr1) ¢ Update the control variate /;

11: end for




Appendix D
ProxSkip Theory



Optimization Formulation of Federated Learning

n # devices /
machines
. def 1
min f(x) = — ) fi(x)
rERA n “
1=1
# model parameters / features Loss on local data D; stored on device

fi(z) = E¢np, fig(2)

The datasets Dy, ..., D,, can be arbitrarily heterogeneous




Consensus Reformulation

mn
min {f(x) def l E fi (x)} Bad: non-differentiable
xERY n —

Good: Indicator function of a

@ nonempty closed convex set
optimization in R™?

min Zf@ iy —|—¢($1, )

T1,...,Tn ERA

optimization in R?

def |0, ity = =x,,

Y (X1, e, Ty) =

+00, otherwise.



The epigraph of 9 is a closed and convex set

Three Assumptions

epi(y) € {(z,t) € R x R | () < ¢)

min f(x) +(x)

rceRA

° f is p-convex and L-smooth: ° Y : R? - RU {400} is proper, closed, and convex

eyl < Dy(e.y) < &z — o © v is proximavie

i . Rd d
Bregman divergence of f: The proximal operator prox,, : R® — R® defined by

Dy(z,y) = f(z) - fy) = (VS(@),z — y) prox,,(z) < arg min (wu) b2l x||2)

u€ER4

can be evaluated exactly (e.g., in closed form)



ProxSkip: The Algorithm (Bird’s Eye View)

Tiv1 =@ — v (VSf(xe) — hy)

with probability 1 — p do Tii1 = Tyq1 hig1 = hy
1l—p=1

evaluate proxy ,(7)
b

with probability p do

?

Li+1 = - I

hii1="1
. t+1




ProxSkip: Bounding the # of Iterations

Th f is p-convex and L-smooth:
eorem: Llla — yl12 < Dy (@) < il -yl

% is the condition number of f

L 1 1 i
tzmax{ , 2}log8 j £ (U] < el

# iterations Lyapunov function:

def 2
p = probability of \Ijt — ||$t — L% H | 2 9
evaluating the prox L P




ProxSkip: Optimal Prox-Evaluation Probability

Since in each iteration we evaluate the prox with probability p, I - »
: . . : ~ is the condition number of f
the expected number of prox evaluations after ¢ iterations is: M

p-t:p-max{ﬁ,plz}-log%:max{p-%,%}-log%

Computation of optimal p, for % =2

3

Minimized for p satisfying p - % = % 0B
1 g/ :
i Px — —F—— Y=
L///L 0 i 1 2 3 4 5



ProxSkip: # of Gradient and Prox Evaluations

1
RV T

# of iterations S N G L o og?

pp? 3 o €

. . L 1 1 L 1

# of gradient evaluations max ) o9 +log = " log -

Expected # of gradient evaluations 1 L
between 2 prox evaluations p p




Federated Learning: ProxSkip vs Baselines

Table 1. The performance of federated learning methods employing multiple local gradient steps in the strongly convex regi

# local steps # floats sent stepsize linear rate better
method . .. o # rounds .
per round per round on client ¢ rate? than GD?
GD (Nesterov, 2004) 1 d % / (fj( k) ©
. 1 G2 \@
LocalGD (Khaled et al., 2019; 2020) T d > X @ ( T )
Scaffold (Karimireddy et al., 2020) T 2d L © v O(k) ©
S-Local-GD @ (Gorbunov et al., 2021) T d< # < 2d ® % v
FedLin ® (Mitra et aL,, 2021) T; 2d T,lL v
Scaffnew © (this work) 1 (b d 1 /
D L
for any p € (0, 1] P
Scaffnew © (this work)
(h) 1
for optimal p = —— VK @ L 7

VE
@ This is a special case of S-Local-SVRG, which is a more general method presented in (Gorbunov et al., 2021). S-Local-GD arises as a special case when full gradient
is computed on each client.
® Fed Lin is a variant with a fixed but different number of local steps for each client. Earlier method S-Local-GD has the same update but random loop length.
© The O notation hides logarithmic factors.
@ @G is the level of dissimilarity from the assumption Ly IV fi(=) 1> < G? +2LB? (f(z) — f.), V.
©) We use Scaffold’s cumulative local-global stepsize 7;7 g for a fair comparison.
® The number of sent vectors depends on hyper-parameters, and it is randomized.
® Scaffnew (Algorithm 2) = ProxSkip (Algorithm 1) applied to the consensus formulation (6) + (7) of the finite-sum problem (5).

® ProxSkip (resp. Scaffnew) takes a random number of gradient (resp. local) steps before prox (resp. communication) is computed (resp. performed). What is shown
in the table is the expected number of gradient (resp. local) steps.



Appendix E
Extensions



From Gradients to Stochastic Gradients

* As described, in ProxSkip each worker computes the full gradient of its local function

* It’s often better to consider a cheap stochastic approximation of the gradient instead
* We consider this extension in the paper
* We provide theoretical convergence rates

Vii(ze) = gi(ze)

Full gradient Stochastic gradient

E [gi,t(fﬁt) \ CUt] = qu;(ﬂi‘t)

B |gie @) — V/ (2] | 2] < 24D (w,2,) +C
(Gower et al, 2019)



From Fully Connected Networks to Arbitrary
Connected Networks

* In each communication round of ProxSkip, each worker sends messages to
all oher workers (e.g., through a server).

* We can think of ProxSkip workers as the nodes of a fully-connected network.
* |n each communication round, all workers communicate with their neighbors.

* In the paper we provide extension to arbitrary connected networks.
B

Fully connected network Arbitrary connected network




The End
(for real)



