A
y Y

)4
KAUST

King Abdullah University of
Science and Technology

Vienna

The First Optimal Distributed SGD

(in the Presence of Data, Compute and
Communication Heterogeneity)

Peter Richtarik
King Abdullah University of Science and Technology
Kingdom of Saudi Arabia

One World Optimization Seminar in Vienna, June 3-7, 2024

E S I Erwin Schradinger International Institute
for Mathematics and Physics

< PeterRichtarik
@peter richtarik

When you get what you didn't know you needed &2
(courtesy of The Erwin Schroedinger International
Institute For Mathematics and Physics, Vienna)

17:02 - 03/06/2024 From Earth - 8,2K Views

il View analytics

5 Reposts 3 Quotes 73 Likes 8 Bookmarks

O
3

zation & Machine Learning Lab @ KAUST

N

= , \\\

! e Tl‘_qll \l“u

WI

”“”\

uv-- il
IJ i

Part 1
Introduction

Optimization Problem
def 1
: e
1mirn L) — — \ L
min f() & 2 3 i(@)

Loss on local data D, stored on machine ¢

fi(z) == B, [f(2,8)]

parallel
machines

model parameters / features

I It takes 7; seconds for worker ¢ to compute V f(x, &), where & ~ D; 0<m<m< <7,
e It takes 0; seconds for worker i to communicate g € R? to the server

Find a (possibly random) vector & € R* such that E ||V f(2)]]?| <e

Parallel Computing Architecture

x gets updated by the server

Server
. A
| | Vi@
Vi(x,§)
v
Worker 1 Worker 2 Worker 3
f1(@) == Eeup, [f(2,8)] fo(z) := Eenp, |f(2,8)] f3(x) :=Eenp, [f(2,€)]

Vf(x,&) compute time = 71 secs Vf(z,£) compute time = 75 secs V f(x, &) compute time = 73 secs

Three Types of Heterogeneity

Data data distributions Dy, ..., D,, can be different

Compute compute times 7, ..., 7, are nonzero and can be different

Communication communication times 61, ..., 0, are nonzero and can be different

Typical Assumptions

G inf f € R
a fi(x) :=Eeup, [f(z,§)]

Gradient of local functions is Lipschitz:

i€{1eeen} 2oty lz =y

Stochastic gradients have bounded variance:

" max _sup Eeop, [|VF(2,8) — Eenp, [Vf(z,9)]] <0°

First optimal

O ur Pa pe IS parallel SGD under...

Alexander Tyurin and P.R.

Optimal time complexities of parallel stochastic optimization ... computation
Rennala SGD : : (and/or data) heterogeneit
_ methods under a fixed computation model g y
Malenia SGD
NeurlPS 2023

Acc. Rennala SGD

Alexander Tyurin, Marta Pozzi, Ivan llin and P.R.

Shadowheart SGD: Distributed asynchronous SGD with optimal ... communication
time complexity under arbitrary computation and (and computation) heterogeneity
Shadowheart SGD communication heterogeneity
arXiv:2402.04785, 2024 [Rennala SGD as a special case]
Alexander Tyurin, Kaja Gruntkowska, and P.R.
Freya PAGE: First optimal time complexity for large-scale
Freya PAGE nonconvex finite-sum optimization with heterogeneous ... computation heterogeneity for
Freya SGD asynchronous computations finite-sum problems

arXiv:2405.1554, 2024

in the large-scale regime: m > n?

Alexander Tyurin and P.R.

ISERISP ISP ISP

On the optimal time complexities in decentralized stochastic .. computation and
imizati communication heterogeneity in
Fragile SGD, Amelie SGD asy'nchronous optimization e ;qetu y
+ accelerated variants arXiv:2405.16218, 2024 P

Peter, What About the Weird Algorithm Names?

Rennala

Rennala, Queen of the Full Moon is a
Legend Boss in Elden Ring. Though not a
demigod, Rennala is one of the
shardbearers who resides in the Academy
of Raya Lucaria. Rennala is a powerful
sorceress, head of the Carian Royal
family, and erstwhile leader of the
Academy.

Optimal Parallel Stochastic Gradient Methods

Rennala SGD
Tyurin & R (NeurlPS ‘23)

Data
Heterogeneity
(D; different)

Compute
Heterogeneity
(7; different)

Communication
Heterogeneity
(0; different)

Smooth
Nonconvex

Smooth
Convex

Infinite / Finite

Supports
Decentralized
Setup?

Optimal
Time
Complexity?

Malenia SGD
Tyurin & R (NeurlPS ‘23)

Accelerated Rennala SGD
Tyurin & R (NeurlPS ‘23)

Shadowheart SGD
Tyurin, Pozzi, llin & R 24

Freya PAGE
Tyurin, Gruntkowska & R 24

Freya SGD
Tyurin, Gruntkowska & R 24

Fragile SGD
Tyurin & R 24

Amelie SGD
Tyurin & R 24

Part 2
Previous Approaches
to Parallelizing SGD

Hero SGD

Algorithmic idea: The fastest worker does it all!

The hero!

il:l:l:l::l

~ %+€+

(Fair) Minibatch SGD

Algorithmic idea: Each worker does one job only!

Asynchronous SGD

Algorithmic idea: All workers are slaves and useful

.

published in NIPS 2011

HOGWILD!: A Lock-Free Approach to Parallelizing
Stochastic Gradient Descent

[]
e T . B NeurlPS 2020 Test of Time Award
leonn@cs.wisc.edu brecht@cs.wisc.edu chrisre@cs.wisc.edu

Stephen J. Wright
swright@cs.wisc.edu
Computer Sciences Department

University (_)f Wisconsin-Madison Stephen Wright 7 FoLLowiNG Cited by VIEW ALL
Madison, WI 53706 Department of Computer Sciences and Wisconsin Institute for Discovery, University, Al Since 2010
of Wisconsin
Abstract Verified email at cs.wisc.edu - Homepage Gitations 0481 26604
Optimization heindex 70 a4
i10-index 199 123
Stochastic Gradient Descent (SGD) is a popular algorithm that can achieve state-
of-the-art performance on a variety of machine learning tasks. Several researchers e CITEDBY YR £
have recently proposed schemes to parallelize SGD, but all require performance- Nitietioal Optimization {2nd sdition) Weoe® 2008 4500
destroying memory locking and synchronization. This work aims to show using v emdely) Wnght
= pringer 3000 THE i s . H
novel theoretical analysis, algorithms, and implementation that SGD can be im- o - _ Hogwild: A lock-free approach to parallelizing stochastic gradient descent
) tod without Tovkine. W . te sch alled HOGWILD! Gradient projection for sparse pp to sensing and other a5 2007 -
plemented without any locking. We present an upda. scheme cal'e D e e sk, S Wright Authors Benjamin Recht, Christopher Re, Stephen Wright, Feng Niu
which allows processors access to shared memory with the possibility of overwrit- EEE Journalof selected topics i signal processing 1 (4), 586-597 207 206 201 2020 2021 2020 2020 2026 ©
ing each other’s work. We show that when the associated optimization problem Primal-dual interior-point methods — 1607 Publication date 2011
is sparse, meaning most gradient updates only modify small parts of the deci- oo Asvancms i Neurl Ifomaton Prosssae S
sion variable, then HOGWILD! achieves a nearly optimal rate of convergence. We onference vances in Neural Information Processing Systems
E 5 Hogwild: A lock-free approach to parallelizing stochastic gradient descent 2719 2011 X
demonstrate experimentally that HOGWILD! outperforms alternative schemes that B Recht, G Re, S Wright, F Nu Osrticles 7 artcles
. B Advances in Neural Information Processing Systems, 693-701 Pages 693-701
use locking by an order of magnitude. ot availablo avaiable
Sparse ion by separable imati 2284 2009 .) N . B)
SJ Wright, RD Nowak, MAT Figueiredo Based on funding mandates Description Stochastic Gradient Descent (SGD) is a popular algorithm that can achieve state-of-the-
{555 THSRESSHGNS cn s prossssing SF(7h SHE2EES art performance on a variety of machine learning tasks. Several researchers have
1 Introduction eonty rpoed shanes b paralels 530 bt ek prtomane dor g
analysis, algorithms, and implementation that SGD can be implemented without any
With its small memory footprint, robustness against noise, and rapid learning rates, Stochastic Gra- locking. We present an update scheme called Hogwild which allows processors access
dient Descent (SGD) has proved to be well suited to data-intensive machine learning tasks [3,5,24]. to shared memory with the possibility of overwriting each other's work. We show that
However, SGD’s scalability is limited by its inherently sequential nature; it is difficult to paral- when the associated optimization problem is sparse, meaning most gradient updates

only modify small parts of the decision variable, then Hogwild achieves a nearly optimal
rate of convergence. We demonstrate experimentally that Hogwild outperforms
alternative schemes that use locking by an order of magnitude.

lelize. Nevertheless, the recent emergence of inexpensive multicore processors and mammoth,
web-scale data sets has motivated researchers to develop several clever parallelization schemes for
SGD [4,10,12,16,27]. As many large data sets are currently pre-processed in a MapReduce-like
parallel-processing framework, much of the recent work on parallel SGD has focused naturally on Total citations ~ Cited by 2719
MapReduce implementations. MapReduce is a powerful tool developed at Google for extracting
information from huge logs (e.g., “find all the urls from a 100TB of Web data”) that was designed
to ensure fault tolerance and to simplify the maintenance and programming of large clusters of ma-
chines [9]. But MapReduce is not ideally suited for online, numerically intensive data analysis.
Iterative computation is difficult to express in MapReduce, and the overhead to ensure fault toler-
ance can result in dismal throughput. Indeed, even Google researchers themselves suggest that other
systems, for example Dremel, are more appropriate than MapReduce for data analysis tasks [20].

2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024

Scholar articles Hogwild!: A lock-free approach to parallelizing stochastic gradient descent

For some data sets, the sheer size of the data dictates that one use a cluster of machines. However, B Recht, C Re, S Wright, F Niu - Advances in neural information processing systems,
there are a host of problems in which, after appropriate preprocessing, the data necessary for statisti- 2011 ,)

2 A . B Cited by 2718 Related articles All 35 versions
cal analysis may consist of a few terabytes or less. For such problems, one can use a single inexpen-
sive work station as opposed to a hundred thousand dollar cluster. Multicore systems have significant Hogwild!: Alocki freeapproach toparallelizingstochasticgradientdescent *
performance advantages, including (1) low latency and high throughput shared main memory (a pro- RB NiuF - ... Systems. Granada, Spain, 2011
cessor in such a system can write and read the shared physical memory at over 12GB/s with latency Citedby 2 Related articles

in the tens of nanoseconds); and (2) high bandwidth off multiple disks (a thousand-dollar RAID

ur Inspiration: Two Beautiful Papers

Asynchronous SGD Beats Minibatch SGD
Under Arbitrary Delays

Konstantin Mishchenko Francis Bach Mathieu Even Blake Woodworth

DI ENS, Ecole normale supérieure,
Université PSL, CNRS, INRIA
75005 Paris, France

Abstract

The existing analysis of asynchronous stochastic gradient descent (SGD) degrades
dramatically when any delay is large, giving the impression that performance
depends primarily on the delay. On the contrary, we prove much better guarantees
for the same asynchronous SGD algorithm regardless of the delays in the gradients,
depending instead just on the number of parallel devices used to implement the
algorithm. Our guarantees are strictly better than the existing analyses, and we
also argue that asynchronous SGD outperforms synchronous minibatch SGD in the
settings we consider. For our analysis, we introduce a novel recursion based on
“virtual iterates” and delay-adaptive stepsizes, which allow us to derive state-of-the-
art guarantees for both convex and non-convex objectives.

1 Introduction

‘We consider solving stochastic optimization problems of the form

minyers {F(x) = Egnnf(x;€)}, (6}
which includes machine learning (ML) u’mnmg objecuves. where f| (x E) represents the loss of a
model parametenzed by x on the datum £. D g on the D could rep a

finite dataset of size n or a population distribution. In recent years, such stochastic optimization
problems have continued to grow rapidly in size, both in terms of the dimension d of the optimization
variable—i.e., the number of model parameters in ML—and in terms of the quantity of data—i.e., the
number of samples £1,. .., £, ~ D being used. With d and n regularly reaching the tens or hundreds
of billions, it is increasingly necessary to use parallel optimization algorithms to handle the large
scale and to benefit from data stored on different machines.

There are many ways of employing parallelism to solve (1), but the most popular approaches in
practice are first-order methods based on stochastic gradient descent (SGD). At each iteration, SGD
employs stochastic estimates of VF to update the parameters as X, = X1 — 7%V f(Xp_1;€x—1)
for an i.i.d. sample £x—; ~ D. Given M machines capable of computing these stochastic gradient
estimates V f (x; £) in parallel, one approach to pamllelizing SGD is what we call “Minibalch SGD ”
This refers to a synchronous, parallel algorithm that d hes the current 1 to
each of the M machines, waits while they compute and communicate back their gradient esumates
gk 1- ,g,c 1» and then takes a minibatch SGD step x = Xx_1 — V& * ZM 181 - Thisisa
natural 1dea with long history [16, 18, 55] and it is a commonly used in pract\ce [e.g., 22]. However,
since Minibatch SGD waits for all M of the hines to finish puting their gradient esti
before updating, it proceeds only at the speed of the slowest machine.

There are several possible sources of delays: nodes may have heterogeneous hardware with different
computational throughputs [23, 25], network latency can slow the communication of gradients, and

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

Sharper Convergence Guarantees for Asynchronous
SGD for Distributed and Federated Learning

Anastasia K ian U. Stich Martin Jaggi
EPFL CISPA* EPFL
anastasia.koloskova@epfl.ch stich@cispa.de martin.jaggi@epfl.ch
Abstract

‘We study the asynchronous stochastic gradient descent algorithm for distributed
training over n workers which have varying computation and communication
frequency over time. In this algorithm, workers compute stochastic gradients in
parallel at their own pace and return those to the server without any synchronization.
Existing convergence rates for this algorithm for non-convex smooth objectives
depend on the maximum gradient delay 7,,,x and show that an e-stationary point
is reached after O (022 | Tiyaxc ™) iterations, where o denotes the variance of
stochastic gradients.

In this work we obtain (i) a tighter convergence rate of
O(c%e2+ ‘/ms'l) without any change in the algorithm, where Tq.q is
the average delay, which can be significantly smaller than 7max. We also provide
(ii) a simple delay-adaptive learning rate scheme, under which asynchronous SGD
achieves a convergence rate of O(0%c ™2 + Tauge), and does not require any
extra hyp tuning nor extra icati Our result allows to show
for the first time that asynchronous SGD is always faster lhan mini-| balch SGD.
In addition, (iii) we consider the case of h by
federated learning applications and improve the convergence rate by proving a
weaker depend on the i delay pared to prior works. In particular,
we show that the heterogeneity term in convergence rate is only affected by the
average delay within each worker.

1 Introduction

The stochastic gradient descent (SGD) algorithm [43, 13] and its variants (momentum SGD, Adam,
etc.) form the foundation of modern machine learning and frequently achieve state of the art results.
With recent growth in the size of models and available training data, parallel and distributed versions
of SGD are becoming increasingly important [57, 17, 16]. Without those, modern state-of-the art
language models [44], generative models [40, 41], and many others [50] would not be possible. In
the distributed setting, also known as data-parallel training, optimization is distributed over many
compute devices working in parallel (e.g. cores, or GPUs on a cluster) in order to speed up training.
Every worker computes gradients on a subset of the training data, and the resulting gradients are
aggregated (averaged) on a server.

The same type of SGD variants also form the core algorithms for federated learning applications [34,
24] where the training process is naturally distributed over many user devices, or clients, that keep
their local data private, and only transfer (e.g. encrypted or differentially private) gradients to the
server.

Arich li exists on the theory of above mentioned parallel SGD methods, see
e.g. [17.13] and references therein. Plain parallel SGD still faces many challenges in practice, motivat-

*CISPA Helmholtz Center for Information Security

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

arXiv: June 15, 2022

arXiv: June 16, 2022

Optimal Time Complexities of
Parallel Stochastic Optimization Methods
Under a Fixed Computation Model

Alexander Tyurin Peter Richtirik
KAUST
Saudi Arabia Saudi Arabia
1 htarikognail.con
Abstract

Parallelization is a popular strategy for improving the performance of iterative.
algorithms. Optimization methods are no exception: design of cfficient paralle]
optimization methods and tight analysis of their thearetical properties are importan.
research endeavors. While the minimax complexities are well known for sequential
optimization methods, the theory of parallel optimization methods is less explored.
10 this paper, we propose & new protocol that generalizes the classical oracle frame-
work approach. Using this protocl, we establish minimaz complesxites for parallel
o h

 have access (o an unbiased stochastic gradient oracle
with bounded variance. We consider a fixed computation model characterized
by each quiring a fixed but works stochas-

i aradient. We prove lowar bounds nd develop opimal lgonthms that acin
Tesulihave surprsing conseduence or e Mertire of aselonios
optization methods.

1 Introduction
‘We consider the nonconvex optimization problem

mig {(@) = Beon /(@i 8) |, U]
iy

where f : RY x 8¢ - R, @ C R, and £ is & random variable with some distribution D on S¢. In
machine lcaing, S¢ could be the space of all possible data, D s the distribution of the training
dataset, and f(-,€) isthe loss of data sample &. In ths paper we address he following natural setup:
(i) n workers are available to work in parallel,
(i) the i* worker requires 7 seconds' to calculate a stochasti gradient of f.
The function f is Z—smooth and (see Assumpions 7.1-7.2), and stochastic gradients
are unbiased and o”-variance-bounded (sce Assumption 7.3).

11 Classical theory

Tn the nonconvex setting, gradient descent (GD) is an optimal method with respect o the number of
gradient (V f) calls (Lan, 2020; Nesterov, 2018; Carmon et a., 2020) for finding an approximately

Stationary point of . Obviously,a key issue with GD is that it requires access to the exact gradients

TOr any other unit of time.

Alexander Tyurin and P.R.

Optimal time complexities of parallel stochastic optimization
methods under a fixed computation model

NeurlPS 2023

Rennala SGD

Algorithmic idea: Minibatch SGD with asynchronous minibatch collection

i]:l::l

Upper Bound

. Gradient of f is L-Lipschitz
Theorem (informal)

Assume data homogeneity and zero communication times.
Then Rennala SGD solves the problem in

Number of parallel machines 1
m
, 1 1 LA LAg?
96 X min - E — - —
me{l,....n} \ M “ n Ti € M
1=
seconds.

Compute times
O<n < <..-<71,

Algorithm outputs & such that E |||V f(2)[]?] <e Sulgd Eewp [V f(2,6) = VI(@)]?] < 0?
Te

Matching Lower Bound

Upper Bound

Theorem (informal) Gradient of f is L-Lipschitz

Number of paral 1
. 11 2
Theorem (informal) g iy (552) (2 BE)
Compute times
0 < <

outputs & such that E [|V/@)[*] <e | 5P Eep [IVf(z,6) - V@] < 0*

It is not possible to design a method that will find a solution faster than in

—1

1 1 LA LAG?
0 i —) = |
Lmin (—+ =,)

seconds.

Rennala SGD = first optimal parallel SGD

Classical Oracle: Keeps Track of # Iterations

Distribution

governing noise Oracle class Algorithm class

Function class

Protocol 1 Classical Ora. le Protocol
1: Imput: function f € F oracle and di/ tribution (O, T ¢ O(f) agcrithm A € A

2: fork=0,...,00do

3: rk — Ak(ql nk) > 2% = A% fork = 0.
4: gk+1 — O(xk,§k+1)‘ &-kz—l—l P\

5: ena 10r Typically, stochastic gradient:

gFHL = V f(aF, gb+1)

Iteration complexity (classical complexity measure):

Moracte (A, F) := inf sup sup inf{k e N|E IVf(®))?] <e}

A€A feF (0,D)e0
/ (0,D)e0(f) [Nemirovsky and Yudin, 1983] [Nesterov, 2018]

[Carmon et al, 2020] [Arjevani et al, 2022]

New Oracle: Keeps Track of Time

Protocol 2 Time Oracle Protocol
: Imput: functions f € F, oracle and distribution (O, D) € O(f), algorithm A € A

[E—

2: s9=0

3: fork=0,...,00do

4: k) = AF(g1,..., g"), >
500 (sFL M) =00 2k sk), e A D

6: end for

Iteration complexity (classical complexicy measure):
Moracte (A, F) := inf sup sup inf {k e N|E[[|Vf(z")|?] <e}
ACA feF (0,D)€0(f)

: . , Sy = {k e NU{0} | t* <t}
Time complexity (new complexity measure):

. :: . . > . k 2 <
e (A.F) 1= fuf sup sup i {t >0 | E [ng 1V £ ()] } < }

Data Homogeneous Regime

Method Time Complexity
Minibatch SGD m (LA + LR)
Asynchronous SGD
(Cohen et al., 2021) 1 i 1\ (% N GzLA)
(Koloskova et al., 2022) no T € ne?

(Mishchenko et al., 2022)

Rennala SGD
(Theorem 7.5)

Lower Bound
(Theorem 6.4)

Experimental Results (Sample)

164

10

109

fixt) = f(ix™)

1071

1072

T, = Vi seconds

,

Asynchronous SGD: Step size: 0.00048828125
- Asynchronous SGD: Step size: 0.000244140625
== Asynchronous SGD: Step size: 0.0001220703125
=P Minibatch SGD: Step size: 1.0 (Timeout)
== Minibatch SGD: Step size: 2.0 (Timeout)
—@— Minibatch SGD: Step size: 0.5 (Timeout)

<P~ Rennala SGD: Step size: 2.0 Batch Size: 40

% Rennala SGD: Step size: 2.0 Batch Size: 80

O~ Rennala SGD: Step size: 1.0 Batch Size: 20

\ N T—
+ —

L ¢ '

- o o

0 200 400 600 800 1000

times (seconds)

Figure 3: # of workers n = 10000.

Part 4
Two Extensions

Extension 1: Data Heterogeneous Regime

Method Time Complexity
Minibatch SGD m (LA + <L)
ne

Malenia SGD
(Theorem A.4)

Lower Bound
(Theorem A.2)

Extension 2: Convex (Data Homogeneous) Regime

Method Time Complexity
ini . [VLR MZ2R? } o2 R?)
Minibatch SGD Tn (mln { N + 3
Asynchronous SGD (L S L) —1 (LRz n o2 R2)
(Mishchenko et al., 2022) n f<i=1 T4 € ne?

(Accelerated) Rennala SGD | } o2 R2)
(Theorems B.9 and B.11) i

Lower Bound (Theorem B.4) _ 4+ o?R?)

Lower Bound (Section M)
(Woodworth et al., 2018)

71 Min

VIR M2R2) | (1ywn 1 -1 ;2R2
Ve 0 2 n 2ui=1 Ty —3

V f is L-Lipschitz, f is M-Lipschitz, and ||z° — 2*|| < R

The End

Part 5
Further Extensions

Optimal Parallel Stochastic Gradient Methods

Rennala SGD
Tyurin & R (NeurlPS ‘23)

Data
Heterogeneity
(D; different)

Compute
Heterogeneity
(7; different)

Communication
Heterogeneity
(0; different)

Smooth
Nonconvex

Smooth
Convex

Infinite / Finite

Supports
Decentralized
Setup?

Optimal
Time
Complexity?

Malenia SGD
Tyurin & R (NeurlPS ‘23)

Accelerated Rennala SGD
Tyurin & R (NeurlPS ‘23)

Shadowheart SGD
Tyurin, Pozzi, llin & R 24

Freya PAGE
Tyurin, Gruntkowska & R 24

Freya SGD
Tyurin, Gruntkowska & R 24

Fragile SGD
Tyurin & R 24

Amelie SGD
Tyurin & R 24

Shadowheart SGD:

Optimal Parallel SGD under
Compute and
Heterogeneity

Shadowheart SGD

Algorithm 1 Shadowheart SGD

1:

[a—
<

el e e e T
AN ANIE A O e

17:
18:

A e R A T

Input: starting point 2° € R?, stepsize v > 0, the ratio
o* /e, computation times h; > 0, and communication
times 7; > 0 for ¢ € [n]

Find the equilibrium time ¢* using Def. 4.2

Set b; = H—J and m; = VT—J for all ¢ € [n]

Find active workers Sa = {i € [n] : b; Am; > 0}
fork=0,1,..., K —1do
Run Alg. 2 in all active workers Sa
Broadcast z*, b;, and m; to all active workers S
Initialize g* = 0
for i € S, in parallel do

—1
i (i) (bzw + UJUE—Q + mzas—2)
fOl’j :1,...,m7;d0
Receive C;; (gF) from worker i
kE_ k C.. (ak
9" = g" + wiCi; (gF)
end for
end for
g* = g*/ (i, wimb;)
ghtl = gk _ ~ gk
end for

(a) :Ifcuannd"?2 =0, then w; =1

Algorithm 2 Strategy of Worker ¢

1
2
3
4.
5:
6
7
8

Receive z*, b;, and m; from the server

: Init gF =0
:forl=1,...,b;do

Calculate V f(z*; £F),
g =gF + Vf(xk,ﬁfl)

k
il ND&

: end for
:forj=1,...,m; do

Send C;; (9¥) = C (g¥; l/,f“]) to the server,
I/f;- ~D,, Cz'j c U(W)
end for

Shadowheart SGD

Table 1: Time Complexities of Centralized Distributed Algorithms. Assume that it takes at most h; seconds to worker
1 to calculate a stochastic gradient and 7; seconds to send one coordinate/float to server. Abbreviations: L = smoothness
constant, € = error tolerance, A = f (:1;0) — f*, n = # of workers, d = dimension of the problem. We take the Rand K
compressor with K = 1 (Def. C.1) (as an example) in QSGD and Shadowheart SGD. Due to Property 5.2, the choice K = 1
is optimal for Shadowheart SGD up to a constant factor.

Time Complexities in Some Regimes

Method Time Complexity max{hn, #n} = 00
max{h; 7’_“} z oo Vi <’ n hi = h,7; =7 Vi € [n] Numerical Comparison®™
vy . (equal performance) o?/e =
(the last worker is slow)
1 10° 106
.2 2
.- g (LA o o2LA 0o max{h,d+, 4te= heZ} LA 3 3 4
Minibatch SGD (see (3) tnel?’z(] max{hi, dfi} (et TEQ_) (non-robust) (worse, e.g., wheneT', dorn larege) x10 x10 x10
QSGD (see (7)) dho? LA
(Alistarh et al., 2017) max max{hi, 7} (£ +1) L& 4 42244 ol 2 e e x3 x10® x10*
(Khaled & Richtérik, 2020) i€[n] ne (non-robust) (worse, e.g., when & small)
Rennala SGD . _1)
(Tyurin & Richtérik, 2023c), . , 2 (&, LA® < 0o > max { h. d+ hL} LA)
> hz.,dr=., <= == = > ne € x10 x 10 x1.5
(p(‘fl[yn}?hl:onlfus EIGI;OZZ)) - jrg%rrzl] ey gy OTmgo e 1';1 & € (robust) (worse, e.g., when 7, d or n large)
e.g., (Mishchenko et al.,
Shadowheart SGD) < oo . —)
(see (9) and Alg. 1) t*(d — 1,9%/e, [hs, 7] 7) LA© max ¢ h, 7, 4& |/ dtheZ "ho” & LA x1 x1 x1
(Corollary 4.4) (robust)

The time complexity of Shadowheart SGD is not worse than the time complexity of the competing centralized methods (see Sec. 6), and is strictly better in many regimes.
We show that (12) is the optimal time complexity in the family of centralized methods with compression (see Sec. 7).

@ Upper bound time complexities are not derived for Rennala SGD and Asynchronous SGD. However, we can derive the lower bound using Theorem N.5 with w = 0. One should take d7; instead of 7; when apply
Theorem N.5 because these methods send d coordinates. 7 is a permutation that sorts max{h;, d7;} : max{hz,,d7z, } < --- < max{hz,,d7xz, }

® We numerically compute time complexities for d = 10%, n = 103, h; ~ U(0.1,1), 7; ~ U(0.1, 1) (uniform i.i.d.), and three noise regimes 02/ e € {1,10%,10%}. We report the factors by which the time
complexities of the competing methods are worse compared to the time complexity of our method Shadowheart SGD. So, for example, Minibatch SGD, QSGD and Asynchronous SGD can be worse by the factors x 104,

x10%, and x 102, respectively.
©) The mapping ¢* is defined in Def. 4.2.

3.4x1071 4%x10°1 ‘
—¥— Asynchronous SGD: Step size: 0.015625 =¥~ Asynchronous SGD: Step size: 0.015625

== SGDgne: Step size: 0.03125 > « —h— SQl?one: Step size: 0.0}5625
3.2 x 10! <~ Minibatch SGD: Step size: 1.0 ¢~ Minibatch SGD: Step size: 1.0
' > > QSGD: Step size: 0.5 > QSGD: Step size: 0.25
— == Shadowheart SGD: Step size: 1.0, o?/e: 80 —~ < =fl= Shadowheart SGD: Step size: 1.0, 0%/e: 20
*
é 3x1071

% 2.8x10°?

Y
2.6 x1071!
0 10000 20000 30000 40000 50000 0 100000 200000 300000 400000 500000 600000 700000 800000
times (seconds) times (seconds)
(a) Experiment with computation speeds h; = /i (b) Experiment with computation speeds h; = /4
and high communications speeds 7; = V/i/d and low communications speeds 7; = V/i/ d'/?
3.4x107¢!
\ =¥— Asynchronous SGD: Step size: 0.015625
\ == SGD,ne: Step size: 0.03125
32x107! <t~ Minibatch SGD: Step size: 1.0
> QSGD: Step size: 0.25
—_— N\ ¥ == Shadowheart SGD: Step size: 1.0, 0?/e: 20
*_ 3x107?
=
Y
LL 2.8x 1071
é)L"Ak,/\ A
2.6 x1071

-1
2.4 %107 25000 50000 75000 100000 125000 150000 175000 200000
times (seconds)

(c) Experiment with computation speeds h; = /4
and medium communications speeds 7; = v/i/ d3/4

=—¥— Asynchronous SGD

== SGDgpe —a&— SGDope
> > <t~ Minibatch SGD <t~ Minibatch SGD
> QSGD 10-1 > QSGD
< == Shadowheart SGD R:

<

=¥— Asynchronous SGD

== Shadowheart SGD

<

1000 2000 3000 4000

Time, tk

(a@n =10

5000 0 1000 2000 3000 4000 5000
Time, tk

(b) n = 102

Figure 5: h¥ 7F ~ U(0.1,1)

=¥— Asynchronous SGD
—— SGDone

<t~ Minibatch SGD

> QSGD
== Shadowheart SGD

0

1000

2000 3000 4000 5000

Time, tk

(c)n = 10°

Amelie SGD:

Optimal SGD under Computation and
Communication Heterogeneity in the

Decentralized Setup: Amelie SGD

Method The Worst-Case Time Complexity Guarantees Comment
2
Minibatch SGD % max { (1 + ‘;—E) max{ 'rr_lea[x] Ti—js n’elé[lx] hz}} suboptimal if 02/6 is large
1,]E€ N 1E€[(Nn
RelaySGD, Gradient Tracking max LiA requires local L ;-smooth. of f;,
(Vogels et al., 2021) > S [n]s -— max h; suboptimal if 02/ e 1s large
(Liu et al., 2024) i€ln] (even if max;c(n) L; = L)
Asynchronous SGD requires similarity of the functions { f; },
(Even et al., 2024) o requires local L ;-smooth. of f;
Amell(e T%(IBHD ?I;ié,ocvgrerzliound LsA max { 'mea[x] Tisj neu[lx] hi, Z—i (% > hi) } Optimal up to a constant factor
. . 1, n (] n =1

The End
(for real)

