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Part 1
Federated Learning



Jakub Konecny

H Brendan McMahan

Federated Learning
was developed in 2015/2016 in a
collaboration between the University
of Edinburgh & Google




Keith Bonawitz et al
Practical Secure Aggregation for Federated Learning on User-Held Data
NIPS Private Multi-Party Machine Learning Workshop, 2016

H. Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, Blaise Agliera y Arcas
Communication-Efficient Learning of Deep Networks from Decentralized Data
20th International Conference on Artificial Intelligence and Statistics (AISTATS), 2017

¢ Google AlBlog

The latest from Google Research

Federated Learning: Collaborative Machine Learning without

Centralized Training Data
Thursday, April 6, 2017

Posted by Brendan McMahan and Daniel Ramage, Research Scientists

Standard machine learning approaches require centralizing the training data on one machine orin a
datacenter. And Google has built one of the most secure and robust cloud infrastructures for
processing this data to make our services better. Now for models trained from user interaction with
mobile devices, we're introducing an additional approach: Federated Learning.

Federated Learning enables mobile phones to collaboratively learn a shared prediction model while
keeping all the training data on device, decoupling the ability to do machine learning from the need to
store the data in the cloud. This goes beyond the use of local models that make predictions on mobile
devices (like the Mobile Vision APl and On-Device Smart Reply) by bringing model training to the
device as well.

It works like this: your device downloads the current model, improves it by learning from data on your
phone, and then summarizes the changes as a small focused update. Only this update to the model is
sent to the cloud, using encrypted ication, where it is i d with other user
updates to improve the shared model. All the training data remains on your device, and no individual
updates are stored in the cloud.

Your phone personalizes the model locally, based on your usage (A). Many users' updates are aggregated (8) to form a
consensus change (C) to the shared model, after which the procedure is repeated.

1

Federated Learning allows for smarter models, lower latency, and less power consumption, all while
ensuring privacy. And this approach has another immediate benefit: in addition to providing an update
to the shared model, the improved model on your phone can also be used immediately, powering
experiences personalized by the way you use your phone.

We're currently testing Federated Learning in Gboard on Android, the Google Keyboard. When Gboard
shows a suggested query, your phone locally stores information about the current context and
whether you clicked the suggestion. Federated Learning processes that history on-device to suggest
improvements to the next iteration of Gboard's query suggestion model.
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To make Federated Learning possible, = had to overcome many algorithmic and technical
challenges. In a typical machine learning  ‘stem, an optimization algorithm like Stochastic Gradient
Descent (SGD) runs on a large dataset par.  »ned homogeneously across servers in the cloud. Such
highly iterative algorithms require low-latency, h-throughput connections to the training data. But in
the Federated Learning setting, the data is distri. ‘ed across millions of devices in a highly uneven
fashion. In addition, these devices have significani. > her-latency, lower-throughput connections
and are only intermittently available for training.

These bandwidth and latency limitations motivate our Federated Averaging algorithm, which can train
deep networks using 10-100x less communication compared to a naively federated version of SGD.
The key idea is to use the powerful processors in modern mobile devices to compute higher quality
updates than simple gradient steps. Since it takes fewer iterations of high-quality updates to produce
a good model, training can use much less communication. As upload speeds are typically much
slower than download speeds, we also developed a novel way to reduce upload communication costs
up to another 100x by compressing updates using random rotations and quantization. While these
approaches are focused an training deep networks, we've also designed algorithms for high-
dimensional sparse x models which excel on problems like click-through-ratg.orediction.

Deploying this ted Jiology to millions of heterogenous phones running Gboard requl

Jakub Konecny, H. Brendan McMahan, Felix X. Yu, Peter Richtarik, Ananda Theertha Suresh, Dave Bacon
Federated Learning: Strategies for Improving Communication Efficiency
NIPS Private Multi-Party Machine Learning Workshop, 2016
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Your phone participates in Federated L¢ 1ing only
when it won't negatively impact you:'perience.

The system then needs to communicate and aggregate * : model updates in a secure, efficient,
scalable, and fault-tolerant way. It's only the combinatic  of research with this infrastructure that
makes the benefits of Federated Learning possible

Federated learning works without the need to stor: user data in the cloud, but we're not stopping
there. We've developed a Secure Aggregation protocol that uses cryptographic techniques so a
coordinating server can only decrypt the average update if 100s or 1000s of users have participated
— no individual phone's update can be inspected before averaging. It's the first protocol of its kind
that is practical for deep-network-sized problems and real-world connectivity constraints. We
designed Federated Averaging so the coordinating server only needs the average update, which
allows Secure Aggregation to be used; however the protocol is general and can be applied to other
problems as well. We're working hard on a production implementation of this protocol and expect to
deploy it for Federated Learning applications in the near future.

Our work has only scratched the surface of what is possible. Federated Learning can't solve all
machine learning problems (for example, learning to recognize different dog breeds by training on
carefully labeled examples), and for many other models the necessary training data is already stored
in the cloud (like training spam filters for Gmail). So Google will continue to advance the state-of-the-
art for cloud-based ML, but we are also committed to ongoing research to expand the range of
problems we can solve with Federated Learning. Beyond Gboard query suggestions, for example, we
hope to improve the language models that power your keyboard based on what you actually type on
your phone (which can have a style all its own) and photo rankings based on what kinds of photos
people look at, share, or delete.

Applying Federated Learning requires machine learning practitioners to adopt new tools and a new
way of thinking: model development, training, and evaluation with no direct access to or labeling of
raw data, with communication cost as a limiting factor. We believe the user benefits of Federated
Learning make tackling the technical challenges worthwhile, and are publishing our work with hopes
of a widespread conversation within the machine learning community.

Jakub Konecny, H. Brendan McMahan, Daniel Ramage, Peter Richtarik

Federated Optimization: Distributed Machine Learning for On-Device Intelligence
arXiv:1610.02527, 2016




The First Federated Learning App:
Next-Word Prediction

Federated Learning is collaborative machine learning
from private data stored across a (large) number of
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I write about the big picture of artificial intelligence.

Oct 12, 2020, 09:22pm EDT

1. Unsupervised Learning

3. Transformers

4. Neural Network Compression
5. Generative Al

6. “System 2” Reasoning
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Optimization Problem
def 1
: e
1mirn L) — — \ L
min f() & 2 3 i(@)

Loss on local data D, stored on machine ¢

fi(z) == Eenm, [fi(z, )]

# parallel
machines

# model parameters / features

I It takes 7; seconds for worker i to compute V f;(x, &), where £ ~ D; 0<m<m< <7y
e It takes 0; seconds for worker i to communicate g € R? to the server

Find a (possibly random) vector & € R* such that E ||V f(2)]]?| <e



Parallel Computing Architecture

x gets updated by the server
Server

x
Via(z,6) V fs(@,€)
Worker 1 Worker 2 Worker 3
fi(z) = Eeup, [f1(2,€)] fa(x) = Eeup, [f2(z,§)] f3(x) == Eenp, [ f3(2,§)]

V f1(x,&) compute time = 7 secs V fa(z,€) compute time = 75 secs  V f3(z, &) compute time = 73 secs



Three Types of Heterogeneity

Data data distributions Dy, ..., D,, can be different

Compute compute times 7, ..., 7, are nonzero and can be different

Communication communication times 61, ..., 0, are nonzero and can be different




Typical Assumptions

G inf f € R
© /(@) =Eeop, [fi(z,€)

Gradient of local functions is Lipschitz:

i€{1eeen} 2oty lz =y

Stochastic gradients have bounded variance:

_max sup Eeop, [[IVfi(,§) — Eenp, [Vfi(z, O] ] < 0



Our Papers on Optimal Parallel SGD

Optimal Time Complexmes of

Parallel Stochastic Op d
Under a Fixed Computation Model
Alexander Tyurin Peter Richtarik
KAUST KAUST
Saudi Arabia Saudi Arabia
alexandertiurin@gmail.com richtarikOgmail.com

Abstract

Parallelization is a popular strategy for improving the performance of iterative
algorithins. Optimization methods re o exception: design of efficient parllel
and tight analysis of their properties are important
research endeavors. While the minimax complexities are well known for sequential
apimizaon methods, e theory of arallel opimizaton methods i es exlored.
we propose a new protocol that generalizes the c!
ok ppranch. Uning this protocoh we e cum,llﬁxﬂller ﬁ” ,mmllel
optimization methods that have access to an unbiased stochastic gradient oracle
with bounded variance. We consider a fixed computation model characterized
by each worker requiring a fixed but worker-dependent time to calculate stochas-
tic gradient. We prove lower bounds and develop optimal algorithms that attain
r results have surprising consequences for the literature of asynchronous
optimization methods.

1 Introduction
‘We consider the nonconvex optimization problem

min {#(@) == Bewn ()] }, o

where f : R? x §¢ —+ R, Q C R?, and £ is a random variable with some distribution D on S¢. In
achine learning, S¢ could be the space of all possible data, D is the distribution of the training
dataset, and / (-, €) s the loss of a data sample &. In this paper we address the following natural setup:
(i) n workers are available to work in parallel,
(i) the i* worker requires ; seconds' to calculate a stochastic gradient of .

‘The function / is L—smooth and lower-bounded (see Assumptions 7.1-7.2), and stochastic gradients
are unbiased and o%-variance-bounded (see Assumption 7.3).

L1 Classical theory

In the nonconvex setting, gradient descent (GD) is an optimal method with respect to the number of
gradient (V) calls (Lan, 2020; Nesterov, 2018; Carmon et al., 2020) for finding an approximately
stationary point of f. Obviously, a key isstie with G is that it requires access to the exact gradients

"Or any other unit of time.

37th Conference on Neural Information Processing Systems (NeurlPS 2023).

2402.04785v1 [math.OC] 7 Feb 2024

arXiv

Shadowheart SGD: Distributed Asynchronous SGD WItll Optlmal Time

Complexity Under Arbitrary C

ion and Ci i

Alexander Tyurin' Marta Pozzi

Abstract

‘We consider nonconvex stochastic optimization
problems in the asynchronous centralized dis-
tributed setup where the communication times
from workers to a server can not be ignored, and
the computation and communication times are
potentially different for all workers. Using an
unbiassed compression technique, we develop a
new method—Shadowheart SGD—that provably
improves the time complexities of all previous
centralized methods. Moreover, we show that
the time complexity of Shadowheart SGD is op-
timal in the family of centralized methods with
compressed communication. We also consider
the bidirectional setup, where broadcasting from
the server to the workers is ligible, and

i'2 IvanIlin' Peter Richtirik !

worker i 10 send a compressed message to the server; com-
pression is performed via applying lossy communication
compression to the communicated message (a vector from
R?); see Def. 2.1

(d) the server can broadcast compressed vectors to the
workers in (at most) Tuery seconds; compression is per-
formed via applying a lossy communication compression
‘operator to the communicated message (a vector from R%);
see Def. 8.1.

‘The main goal of this work is to find an optimal optimization
strategy/method that would work uniformly well in all sce-
narios characterized by the values of the computaon imes
hi,...., hy and communication times 71,

Since we allow these times to be arbitrarily hemogmm,
designing a single algorithm that would be optimal in all
the hallenging.

develop a corresponding method.

1. Introduction

We consider the nonconvex smooth optimization problem
min (/) = B 8]}, 0]

where f(-;-) : R x S¢ - R, and D is a distribution on
§¢ # 0. Given & > 0, we seck to find a possibility random
point & such that E[||V £ (2)[|%] < . Such a point & is called
an e-stationary point. We focus on solving the problem in
the following setup:

(2) n workers/nodes are able to compute stochastic gradi-
ents V£(z;£) of , in parallel and asynchronously, and it
takes (at most) h‘ seconds for worker i to compute a single
stochastic gradi
(b) the erkerssreconnected 03 server which scts s a
communication hub;
(©) the workers can communicate with the server in par-
allel and asynchronously; it takes (at most) 7; seconds for
King Abdfah Universy of Sciensax Teshnlogy,Tovl
ndence

Saudi Arbin “Uiversiy of Pava Tuly, Correspon
der Tyurin <alexandertiurin@gmail com>.

From the viewpoint of federated learning (Konetny et al.,
2016; Kairouz et al., 2021), our work is a theoretical study
of devi Moreover, our

both cross-silo and cross-device settings as special cases.
Due to our in-depth focus on device heterogeneity and the
challenges that need to be overcome, we do not consider
statistical hcumgmuy. and leave an extension to this setup
to future work,

We rely on assumptions which are standard in the litera-
ture on stochastic gradient methods: smoothness, lower-
‘boundedness and bounded variance.

Assumption 1.1. f is differentiable and Z-smooth, i
[Vf(z) = Vi)l < Lz~ |, Yo,y € R
Assumption 1.2. There exist f* € R such that f(z) > f*
forall z € RY. We define A (%)~ f*, where z° € R?
i a starting point of all algorithms we consider.

Assumption 1.3. For all z € RY, the stochastic gradients
V7 (2;£) are unbiased, and their variance is bounded by
ot > 0.ie, E([Vl(r )] = V() and E¢[| VS (z;6) -
Vi@ <

“To simplify the exposition, in what follows (up o Sec. 7) we
first focus on the regime in which the broadcast cost can be
ignored. We describe a strategy for extending our algorithm
10 the more general regime in Sec. .

:2405.15545v1 [math.OC] 24 May 2024

Freya PAGE: First Optlmal Time Complenty for
Large-Scale N ex Fi (o] with
Heterogeneous Asynchronous Computations

Alexander Tyurin Kaja Gruntkowska Peter Richtirik
KAUST KAUST KAUST

Abstract

In practical distributed systems, workers are typically not homogeneous, and due
to differences in hardware configurations and network conditions, can have highly
varying processing times. We consider smooth nonconvex finite-sum (empirical
ik minimization) problms i this stup and introduce 5 e paralll method,
Freya PAGE, de:
tations. By being ro ot “sagglers” and adapively ignoing slow computations,
Freya PAGE offers significantly improved fime complexity guarantees comy
il provious methods,inchuding Aaynehvonous SGb, Fonnala SGD, SPIDER, nd
PAGE, while requiring weaker assumptions. The algorithm relies on novel generic
stochastic gradient collection strategies with theoretical guarantees that can be of
inerest on thie own,and may be used n the desgn of uture optimizaion meth-
ods. Furthermore, we establish a lower bound for
el by e e et b, wvidlng a Buskmenea) fincroteigieatty
Timit. This lower bound is tight and demonstrates the optimality of Freya PAGE in
the large-scale regime, i.c., when /m > n, where n s # of workers, and rm is # of
data samples.

1 Introduction

In real-world distributed systems used for large-scale machine learning tasks, it is common to
encounter device heterogeneity and variations in processing times mong different computational
uris. These can stemfrom GPU compuration dlays, disprtes in ardvare configurstions,network
conditions. er facters, Tonultng in different computational capabilifics and #pecds aceoss
devices [Chen o al 2016, Tyurin and Richirik, 2023], As a resull, some clients may exccute
faster, even fail to participate in the training altogether.

Due to the above reasons, e aim to address the challenges posed by device heterogeneity in the
context of solving finite-sum nonconvex optimization problems of the form

R UCEES I o
hetc fi : R? 5 R can be viewed as lhc |O“ of a machine learning model = on the i " example in a

s to find an e-stationary point, i.c., a (possibly random)
pmm T such that B[]0/ (B)2] < 2. We focus on the homogencous ditibutcd setup:

« there are n. workerslclientsldevices able to work in parallel,
« each worker has access to stochastic gradients V £;, j € [m),
« worker i calculates ¥ () in less or equal to 7; € [0, oc] seconds for all € [n], j € [m]

‘Preprint. Under review.

2405.16218v1 [math.OC] 25 May 2024

arXiv

On the Optimal Time Complexities in Decentralized
Stochastic Asynchronous Optimization

Alexander Tyurin Peter Richtirik
King Abdullah University of Science and Technology (KAUST)
‘Saudi Arabia
{alexandertiurin, richtarik}ognail.con

Abstract

‘We consider the decentralized stochastic asynchronous optimization setup, where
many

‘communicate with each other using edges in a multigraph. For both homogeneous
and heterogeneous setups, we prove new time complexity lower bounds under the
assumption that computation and communication speeds are bounded. We develop
3 new nearly optiml method, Fraghe SGD, and a new optimal method, Amlie
SGD, that
speeds and match our lower bounds (up to a logarithmic factor in i ‘homogeneous
setting). Our time complexities are new, nearly optimal, and provably improve all
previous asynchronous/synchronous stochastic methods in the decentralized setup.

1 Introduction
‘We consider the smooth nonconvex optimization problem

i i )
min {#(z) = Ben (0]}, »
where f : RY x S¢ — R, and Dy is a distribution on a non-empty set S¢. For a given & > 0, we
want to find a possibly random point 7, called an s—stationary point, such that E[||V £(z)||*] < &.
‘We analyze the heterogencous setup and the convex setup with smooth and non-smooth functions in
Sections B and C.

11 Decentralized setup with times

the following t haven.
with the associated computation times {A,}, and communications times {p;_,,}. It takes less or
equal 0 h; € [0,o0] seconds to compute a stochastic gradient by the i* node, and less or equal
pe€ [0, 00] seconds to send dneclly avector v € R from the i” node o the ;" node it s pos:lhl:
that h; = coand p;_,; =
in parallel, We would ke 1o empmslze that h, € [o ool gy o9 € I0, o] aro oy uppes bounds,
and the real and effective computation and communication times can be arbitrarily hc\:mgcncmn

and rndom. For smplicity of presetaion, we assume the upper bourdsare siatc;howerer,
Section 5. 5 xplain that our result can be trivially extended to the case when the upper ‘bounds
are dynami

‘We consider any weighted directed multigraph parameterized by a vector h € R" such that h; €

[u oc], and a matrix of distances {pi—;};,; € R™*" such that p;.; € [0, 00| forall i, j € [n] and
= 0 forall i € [n]. Every worker i is connected to any other worker j with two edges i — j
255 i, For this setup, it would be converint t deine he dstance of he shortes par from

5/2023

2/2024

5/2024

5/2024




Rennala SGD
Malenia SGD
Acc. Rennala SGD

Shadowheart SGD

Freya PAGE
Freya SGD

Fragile SGD, Amelie SGD
+ accelerated variants
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time complexity under arbitrary computation and
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Freya PAGE: First optimal time complexity for large-scale
nonconvex finite-sum optimization with heterogeneous
asynchronous computations
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Alexander Tyurin and P.R.
On the optimal time complexities in decentralized stochastic

asynchronous optimization
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First optimal
parallel SGD under...

... computation
(and/or data) heterogeneity

... communication
(and computation) heterogeneity

[Rennala SGD as a special case]

... computation heterogeneity for
finite-sum problems

in the large-scale regime: m > n?

... computation and
communication heterogeneity in
the decentralized setup



Peter, What About the Weird Algorithm Names?

Rennala

Rennala, Queen of the Full
Moon is a Legend Boss in Elden
Ring. Though not a demigod,
Rennala is one of the
shardbearers who resides in the

Academy of Raya Lucaria. ' ' » /
Rennala is a powerful sorceress, . .
head of the Carian Royal family, y ,/V

and erstwhile leader of the Amelie

Academy.



Optimal Parallel Stochastic Gradient Methods

Rennala SGD
Tyurin & R (NeurlPS ‘23)

Data
Heterogeneity
(D; different)

Compute
Heterogeneity
(7; different)

Communication
Heterogeneity
(0; different)

Smooth
Nonconvex

Smooth
Convex

Infinite / Finite

Supports
Decentralized
Setup?

Optimal
Time
Complexity?

Malenia SGD
Tyurin & R (NeurlPS ‘23)

Accelerated Rennala SGD
Tyurin & R (NeurlPS ‘23)

Shadowheart SGD
Tyurin, Pozzi, llin & R 24

Freya PAGE
Tyurin, Gruntkowska & R 24

Freya SGD
Tyurin, Gruntkowska & R 24

Fragile SGD
Tyurin & R 24

Amelie SGD
Tyurin & R 24




Part 3
Previous Approaches
to Parallelizing SGD



Hero SGD

Algorithmic idea: The fastest worker does it all!

The hero!

il:l:l:l::l
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(Fair) Minibatch SGD

Algorithmic idea: Each worker does one job only!




Asynchronous SGD

Algorithmic idea: All workers are slaves and useful

.




published in NIPS 2011

HOGWILD!: A Lock-Free Approach to Parallelizing
Stochastic Gradient Descent

[ ]
e T . B NeurlPS 2020 Test of Time Award
leonn@cs.wisc.edu brecht@cs.wisc.edu chrisre@cs.wisc.edu

Stephen J. Wright
swright@cs.wisc.edu
Computer Sciences Department

University (_)f Wisconsin-Madison Stephen Wright 7 FoLLowiNG Cited by VIEW ALL
Madison, WI 53706 Department of Computer Sciences and Wisconsin Institute for Discovery, University, Al Since 2010
of Wisconsin
Abstract Verified email at cs.wisc.edu - Homepage Gitations 0481 26604
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1 Introduction eonty rpoed shanes b paralels 530 bt ek prtomane dor g
analysis, algorithms, and implementation that SGD can be implemented without any
With its small memory footprint, robustness against noise, and rapid learning rates, Stochastic Gra- locking. We present an update scheme called Hogwild which allows processors access
dient Descent (SGD) has proved to be well suited to data-intensive machine learning tasks [3,5,24]. to shared memory with the possibility of overwriting each other's work. We show that
However, SGD’s scalability is limited by its inherently sequential nature; it is difficult to paral- when the associated optimization problem is sparse, meaning most gradient updates

only modify small parts of the decision variable, then Hogwild achieves a nearly optimal
rate of convergence. We demonstrate experimentally that Hogwild outperforms
alternative schemes that use locking by an order of magnitude.

lelize. Nevertheless, the recent emergence of inexpensive multicore processors and mammoth,
web-scale data sets has motivated researchers to develop several clever parallelization schemes for
SGD [4,10,12,16,27]. As many large data sets are currently pre-processed in a MapReduce-like
parallel-processing framework, much of the recent work on parallel SGD has focused naturally on Total citations ~ Cited by 2719
MapReduce implementations. MapReduce is a powerful tool developed at Google for extracting
information from huge logs (e.g., “find all the urls from a 100TB of Web data”) that was designed
to ensure fault tolerance and to simplify the maintenance and programming of large clusters of ma-
chines [9]. But MapReduce is not ideally suited for online, numerically intensive data analysis.
Iterative computation is difficult to express in MapReduce, and the overhead to ensure fault toler-
ance can result in dismal throughput. Indeed, even Google researchers themselves suggest that other
systems, for example Dremel, are more appropriate than MapReduce for data analysis tasks [20].
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Asynchronous SGD Beats Minibatch SGD
Under Arbitrary Delays
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Abstract

The existing analysis of asynchronous stochastic gradient descent (SGD) degrades
dramatically when any delay is large, giving the impression that performance
depends primarily on the delay. On the contrary, we prove much better guarantees
for the same asynchronous SGD algorithm regardless of the delays in the gradients,
depending instead just on the number of parallel devices used to implement the
algorithm. Our guarantees are strictly better than the existing analyses, and we
also argue that asynchronous SGD outperforms synchronous minibatch SGD in the
settings we consider. For our analysis, we introduce a novel recursion based on
“virtual iterates” and delay-adaptive stepsizes, which allow us to derive state-of-the-
art guarantees for both convex and non-convex objectives.

1 Introduction

‘We consider solving stochastic optimization problems of the form

minyers {F(x) = Egnnf(x;€)}, (6}
which includes machine learning (ML) u’mnmg objecuves. where f| (x E) represents the loss of a
model parametenzed by x on the datum £. D g on the D could rep a

finite dataset of size n or a population distribution. In recent years, such stochastic optimization
problems have continued to grow rapidly in size, both in terms of the dimension d of the optimization
variable—i.e., the number of model parameters in ML—and in terms of the quantity of data—i.e., the
number of samples £1,. .., £, ~ D being used. With d and n regularly reaching the tens or hundreds
of billions, it is increasingly necessary to use parallel optimization algorithms to handle the large
scale and to benefit from data stored on different machines.

There are many ways of employing parallelism to solve (1), but the most popular approaches in
practice are first-order methods based on stochastic gradient descent (SGD). At each iteration, SGD
employs stochastic estimates of VF to update the parameters as X, = X1 — 7%V f(Xp_1;€x—1)
for an i.i.d. sample £x—; ~ D. Given M machines capable of computing these stochastic gradient
estimates V f (x; £) in parallel, one approach to pamllelizing SGD is what we call “Minibalch SGD ”
This refers to a synchronous, parallel algorithm that d hes the current 1 to
each of the M machines, waits while they compute and communicate back their gradient esumates
gk 1- ,g,c 1» and then takes a minibatch SGD step x = Xx_1 — V& * ZM 181 - Thisisa
natural 1dea with long history [16, 18, 55] and it is a commonly used in pract\ce [e.g., 22]. However,
since Minibatch SGD waits for all M of the hines to finish puting their gradient esti
before updating, it proceeds only at the speed of the slowest machine.

There are several possible sources of delays: nodes may have heterogeneous hardware with different
computational throughputs [23, 25], network latency can slow the communication of gradients, and

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

Sharper Convergence Guarantees for Asynchronous
SGD for Distributed and Federated Learning

Anastasia K ian U. Stich Martin Jaggi
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Abstract

‘We study the asynchronous stochastic gradient descent algorithm for distributed
training over n workers which have varying computation and communication
frequency over time. In this algorithm, workers compute stochastic gradients in
parallel at their own pace and return those to the server without any synchronization.
Existing convergence rates for this algorithm for non-convex smooth objectives
depend on the maximum gradient delay 7,,,x and show that an e-stationary point
is reached after O (022 | Tiyaxc ™) iterations, where o denotes the variance of
stochastic gradients.

In this work we obtain (i) a tighter convergence rate of
O(c%e2+ ‘/ms'l) without any change in the algorithm, where Tq.q is
the average delay, which can be significantly smaller than 7max. We also provide
(ii) a simple delay-adaptive learning rate scheme, under which asynchronous SGD
achieves a convergence rate of O(0%c ™2 + Tauge ), and does not require any
extra hyp tuning nor extra icati Our result allows to show
for the first time that asynchronous SGD is always faster lhan mini-| balch SGD.
In addition, (iii) we consider the case of h by
federated learning applications and improve the convergence rate by proving a
weaker depend on the i delay pared to prior works. In particular,
we show that the heterogeneity term in convergence rate is only affected by the
average delay within each worker.

1 Introduction

The stochastic gradient descent (SGD) algorithm [43, 13] and its variants (momentum SGD, Adam,
etc.) form the foundation of modern machine learning and frequently achieve state of the art results.
With recent growth in the size of models and available training data, parallel and distributed versions
of SGD are becoming increasingly important [57, 17, 16]. Without those, modern state-of-the art
language models [44], generative models [40, 41], and many others [50] would not be possible. In
the distributed setting, also known as data-parallel training, optimization is distributed over many
compute devices working in parallel (e.g. cores, or GPUs on a cluster) in order to speed up training.
Every worker computes gradients on a subset of the training data, and the resulting gradients are
aggregated (averaged) on a server.

The same type of SGD variants also form the core algorithms for federated learning applications [34,
24] where the training process is naturally distributed over many user devices, or clients, that keep
their local data private, and only transfer (e.g. encrypted or differentially private) gradients to the
server.

Arich li exists on the theory of above mentioned parallel SGD methods, see
e.g. [17.13] and references therein. Plain parallel SGD still faces many challenges in practice, motivat-

*CISPA Helmholtz Center for Information Security
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Optimal Time Complexities of
Parallel Stochastic Optimization Methods
Under a Fixed Computation Model
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Abstract

Parallelization is a popular strategy for improving the performance of iterative.
algorithms. Optimization methods are no exception: design of cfficient paralle]
optimization methods and tight analysis of their thearetical properties are importan.
research endeavors. While the minimax complexities are well known for sequential
optimization methods, the theory of parallel optimization methods is less explored.
10 this paper, we propose & new protocol that generalizes the classical oracle frame-
work approach. Using this protocl, we establish minimaz complesxites for parallel
o h

 have access (o an unbiased stochastic gradient oracle
with bounded variance. We consider a fixed computation model characterized
by each quiring a fixed but works stochas-

i aradient. We prove lowar bounds nd develop opimal lgonthms that acin
Tesulihave surprsing conseduence or e Mertire of aselonios
optization methods.

1 Introduction
‘We consider the nonconvex optimization problem

mig {(@) = Beon /(@i 8) |, U]
iy

where f : RY x 8¢ - R, @ C R, and £ is & random variable with some distribution D on S¢. In
machine lcaing, S¢ could be the space of all possible data, D s the distribution of the training
dataset, and f(-,€) isthe loss of  data sample &. In ths paper we address he following natural setup:
(i) n workers are available to work in parallel,
(i) the i* worker requires 7 seconds' to calculate a stochasti gradient of f.
The function f is Z—smooth and (see Assumpions 7.1-7.2), and stochastic gradients
are unbiased and o”-variance-bounded (sce Assumption 7.3).

11 Classical theory

Tn the nonconvex setting, gradient descent (GD) is an optimal method with respect o the number of
gradient (V f) calls (Lan, 2020; Nesterov, 2018; Carmon et a., 2020) for finding an approximately

Stationary point of . Obviously,a key issue with GD is that it requires access to the exact gradients

TOr any other unit of time.

Alexander Tyurin and P.R.

Optimal time complexities of parallel stochastic optimization
methods under a fixed computation model

NeurlPS 2023
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Optimal Parallel Stochastic Gradient Methods
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Rennala SGD

Algorithmic idea: Minibatch SGD with asynchronous minibatch collection
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Upper Bound

. Gradient of f is L-Lipschitz
Theorem (informal)

Assume data homogeneity and zero communication times.
Then Rennala SGD solves the problem in

Number of parallel machines 1
m
, 1 1 LA LAg?
96 X  min - E — - —
me{l,....n} \ M “ n Ti € M
1=
seconds.

Compute times
O<n < <..-<71,

Algorithm outputs & such that E |||V f(2)[]?] <e Sulgd Eewp [V f(2,6) = VI(@)]?] < 0?
Te



Matching Lower Bound

Upper Bound

Theorem (informal) Gradient of f is L-Lipschitz

Number of paral 1
. 11 2
Theorem (informal) g iy (552) (2 BE)
Compute times
0 < <

outputs & such that E [|V/@)[*] <e | 5P Eep [IVf(z,6) - V@] < 0*

It is not possible to design a method that will find a solution faster than in

—1

1 1 LA LAG?
0 i — ) = |
Lmin ( —+ =, )

seconds.

Rennala SGD = first optimal parallel SGD




Classical Oracle: Keeps Track of # Iterations

Distribution

Function class governing noise Algorithm class

Oracle clg

Protocol 1 Classical Ora.:le Protocol
1: Input: function f € F oracle g

Iteration com

p sup inf{keN|E[|Vf(")]?] <e}

Moracle (Aa
A fEF (0,D)€O(f)

[Nemirovsky and Yudin, 1983] [Nesterov, 2018]
[Carmon et al, 2020] [Arjevani et al, 2022]



New Oracle: Keeps Track of Time

Protocol 2 Time Oracle Protocol

1: Igput: functions f € F, oracle and distribution (O, D)
2: 57 =0

3: fork=0,...,oodo

4: ("1 xR) = AF(gh, .. .9
5 (Sk—|—1 k—|—1) O(tl"ﬂ
6: end for

e A

> tfrh gk

Iteration complg

ke N|E[|Vf(a*)]] < e}

Sy = {k e NU{0} | t* <t}

ime (A, F) :="1Int fet > f 2] <
e (A.F) L Sp  sup i {t_o| [klgStHVf( M_e}



Data Homogeneous Regime

Method Time Complexity
Minibatch SGD m (LA + LR )
Asynchronous SGD
(Cohen et al., 2021) 1 i 1\ (% N GzLA)
(Koloskova et al., 2022) no T € ne?

(Mishchenko et al., 2022)

Rennala SGD
(Theorem 7.5)

Lower Bound
(Theorem 6.4)




Experimental Results (Sample)
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Figure 3: # of workers n = 10000.




Optimal Time Complexities of
Parallel Stochastic Optimization Methods
Under a Fixed Computation Model
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Abstract

Parallelization is a popular strategy for improving the performance of iterative.
algorithms. Optimization methods are no exception: design of cfficient paralle]
optimization methods and tight analysis of their thearetical properties are importan.
research endeavors. While the minimax complexities are well known for sequential
optimization methods, the theory of parallel optimization methods is less explored.
10 this paper, we propose & new protocol that generalizes the classical oracle frame-
work approach. Using this protocl, we establish minimaz complesxites for parallel
o h

 have access (o an unbiased stochastic gradient oracle
with bounded variance. We consider a fixed computation model characterized
by each quiring a fixed but works stochas-

e gradient. We prove lower bounds and develop optimal algorms that atain
resull have suprising consequences for he Ineratare o asynchronous

optimization methods.
1 Introduction
We considet the monconvex optimization problem

iy {#@) = Ben fwi)] . m
where f : B¢ x §¢ — R, Q C R¥, and £ is a random variable with some distribution D on S. In
g

machine lcaing, S¢ could be the space of all possible data, D s the distribution of the training
dataset, and f(-,€) isthe loss of  data sample &. In ths paper we address he following natural setup:

(i) workers are available o work in paalle,
() the i® worker requires T seconds' 10 calculae a stochastic gradient of .
The function f is L-smooth and (see Assumptions 7.1-7.2), and stochastc gradients
arc unbiascd and o-varisnce-bounded (sce Assumption 7.3).
11 Classical theory
In the nonconvex seting, gradient descent (GD) is an optimal method with respect o the number of

Stationary point of . Obviously,a key issue with GD is that it requires access to the exact gradients
TOr any other unit of time.

37 Conference on Neural nformation Processing Systems (NeurlPS 2023),

Two Extensions

Alexander Tyurin and P.R.

Optimal time complexities of parallel stochastic optimization
methods under a fixed computation model

NeurlPS 2023



Extension 1
Handling Data Heterogeneity
(Malenia SGD)



Malenia SGD: Setup R ICERE)

fi(@) == Eenp, [fi(2,£)]

Optimal Parallel Stochastic Gradient Methods

Supports Optimal
Decentralized Time
Setup? Complexity?

Data Compute Communication
Heterogeneity | Heterogeneity Heterogeneity

Smooth Smooth Infinite / Finite
Nonconvex Convex Sum?

(D; different) (7; different) (; different)

Rennala SGD
Tyurin & R (NeurlPS ‘23)

Malenia SGD ; . 0
Tyurin & R (NeurlPS ‘23) A

Accelerated Rennala SGD
Tyurin & R (NeurlIPS ‘23)

Shadowheart SGD
Tyurin, Pozzi, llin & R 24

Freya PAGE
Tyurin, Gruntkowska & R 24

Freya SGD
Tyurin, Gruntkowska & R ‘24

Fragile SGD
Tyurin & R 24

XX XXX

Amelie SGD
Tyurin & R 24

The distributions Dy, ..., D,, are allowed to be different



Malenia SGD

Minibatch size

Method 6 Malenia SGD

2
o

1: Input: starting point 2, stepsize -y, parameter S S = max { [——‘ ; n}

2: Run|Method 7 in all workers <

3: fork=0,1,...,K —1do

4:  Initg*® =0and B; =0

=1

5:  while|( 2> B%) < %]do

6: Wait for the next worker

T Receive gradient, iteration index, worker’s index (g, k', %)

8: if ¥’ = k then

9: gzl‘s = gf +g Method 7 Worker’s Infinite Loop
10: B’{ =Bi+1 1: Init g = 0, ¥’ = —1, and worker’s index i
11: end if 2: while True do
12: Send (z*, k) to the worker 3:  Send (g,k,1) to the server
13:  end while 4:  Receive (z¥, k) from the server
14: k=15~ 1.k 55 kK =k

S 2i-1 B Y 6 g=Vfi(ahe), €~D

150 =T —99 7: end while
16: end for




(Nonconvex) Data Heterogeneous Regime

Method Time Complexity
Minibatch SGD m (LA + <L)
ne

Malenia SGD
(Theorem A.4)

Lower Bound
(Theorem A.2)




Extension 2
Handling the Convex Regime
(Accelerated Rennala SGD)



Accelerated Rennala SGD: Setup

Optimal Parallel Stochastic Gradient Methods

Data
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Accelerated Rennala SGD
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Freya PAGE
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Finite

Freya SGD
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Fragile SGD
Tyurin & R 24

Finite

Amelie SGD
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Convex (Data Homogeneous) Regime

Method Time Complexity
ini . [ VLR MZ2R? } o2 R? )
Minibatch SGD Tn (mln { N + 3
Asynchronous SGD (L S L) —1 (LRz n o2 R2 )
(Mishchenko et al., 2022) n f<i=1 T4 € ne?

(Accelerated) Rennala SGD }
(Theorems B.9 and B.11) i

o

2R2

Lower Bound (Theorem B.4) : } +

Lower Bound (Section M)
(Woodworth et al., 2018)

(o ey m )

71 Min

o

2R2

V f is L-Lipschitz, f is M-Lipschitz, and ||z° — 2*|| < R




The End
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Shadowheart SGD

Optimal Parallel SGD
under Compute Heterogeneity
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Dy =---=D, Communication costs 64, ..., 0, are nonzero (and possibly different)



Shadowheart SGD




Shadowheart SGD

Table 1: Time Complexities of Centralized Distributed Algorithms. Assume that it takes at most h; seconds to worker
1 to calculate a stochastic gradient and 7; seconds to send one coordinate/float to server. Abbreviations: L = smoothness
constant, € = error tolerance, A = f (:L'O) — f*, n = # of workers, d = dimension of the problem. We take the Rand K

compressor with K = 1 (Def. C.1) (as an example) in QSGD and Shadowheart SGD. Due to Property 5.2, the choice K = 1
is optimal for Shadowheart SGD up to a constant factor.

Method Time Complexity . Time Complexities in Some Regimes
max{hn,rn} — 00, h: = h. 7 =+ Vi ical C . (b)
max{hi, 71} < coVi < n i =h,T; E 7 Vi € [n] Numerlca2 omparison
(the last worker is slow) (equal performance) o7fe =
1 103 10°
. 2 2
. . 2 0o h.d+. 4fc® ho® VLA 3
Minibatch SGD (see (3 h;, d7; (% LA LA) max{h, d7, S27—, % %10
(see (3)) znel?z(] max{ (et ne (non-robust) (worse, e.g., when€7", dorn lafge)
QSGD (see (7)) dho? LA
(Alistarh et al., 2017) max max{h;, 7 } ((% +1) L& 4 d“—%gé) et 2 Sne o x 102
(Khaled & Richtarik, 2020) i€ln] e (non-robust) (worse, e.g., when & small)
Rennala SGD . 1 ) A
(Tyurin & Richtérik, 2023c), . . 2 (&, LA® < 00 > max {h d hL} LA
> min max< hz,.,d7z., < < =8 = » @1 Tne €
ASYHChrOﬂOUS SGD = jeln] J 7’ € igl h#, € (robust) (worse, e.g., when 7, d or n large)
(e.g., (Mishchenko et al., 2022))
Shadowheart SGD < oo . — )
(see (9) and Alg. 1) t*(d — 1,%/e, [hi, 7] 7) LA© (robust) max {h, T, 4t () dithe= ’%} La
(Corollary 4.4)

The time complexity of Shadowheart SGD is not worse than the time complexity of the competing centralized methods (see Sec. 6), and is strictly better in many regimes.
We show that (12) is the optimal time complexity in the family of centralized methods with compression (see Sec. 7).

@ Upper bound time complexities are not derived for Rennala SGD and Asynchronous SGD. However, we can derive the lower bound using Theorem N.5 with w = 0. One should take d7; instead of 7; when apply
Theorem N.5 because these methods send d coordinates. 7 is a permutation that sorts max{h;, d7; } : max{hz,,d7z, } < --- < max{hz,,d7%.  }

®) We numerically compute time complexities for d = 10%, n = 103, h; ~ U(0.1,1), 7; ~ U(0.1, 1) (uniform i.i.d.), and three noise regimes 02/ e € {1,10%,10°}. We report the factors by which the time
complexities of the competing methods are worse compared to the time complexity of our method Shadowheart SGD. So, for example, Minibatch SGD, QSGD and Asynchronous SGD can be worse by the factors x 104,
% 10*, and x 102, respectively.

The mapping ¢t~ is defined in Def. 4.2.
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Shadowheart SGD: Adding More Workers...
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Freya PAGE: Setup R = 5 2 A

fi(@) == Eenp, [fi(2,£)]

Optimal Parallel Stochastic Gradient Methods

Supports Optimal
Decentralized Time
Setup? Complexity?

Inf X
Inf X
X

Data Compute Communication Smooth Smooth Infinite / Finite

Heterogeneity | Heterogeneity Heterogeneity Nonconvex Convex Sum?
(D; different) (7; different) (6; different)

Rennala SGD
Tyurin & R (NeurlPS ‘23)

Malenia SGD
Tyurin & R (NeurlPS ‘23)

Accelerated Rennala SGD
Tyurin & R (NeurlPS ‘23)

Shadowheart SGD ) )
Tyurin, Pozzi, llin & R 24

Freya PAGE
Tyurin, Gruntkowska & R 24

Inf

XX

Inf X

Finite

Freya SGD
Tyurin, Gruntkowska & R 24

X
Finite X

XX X

Fragile SGD
Tyurin & R 24 Inf
Amelie SGD
Tyurin & R 24 Inf

Dy=---=D, D; = uniform distribution over m outcomes



PAGE: Optimal Serial SGD

for Finite-Sum Nonconvex Optimization

PAGE: A Simple and Optimal Probabilistic Gradient Estimator for
Nonconvex Optimization

Zhize Li' Hongyan Bao' Xiangliang Zhang' Peter Richtdrik '

Abstract

In this paper, we propose a novel stochastic gradi-
ent estimator—ProbAbilistic Gradient Estimator
(PAGE)—for nonconvex optimization. PAGE is
casy to implement as it is designed via a small ad-
justment to vanilla SGD: in each iteration, PAGE
uses the vanilla minibatch SGD update with prob-
ability p; or reuses the previous gradient with a
small adjustment, at a much lower computational
cost, with probability 1 — p;. We give a simple
formula for the optimal choice of p;. Moreover,
we prove the first tight lower bound Q(n + %)
for nonconvex finite-sum problems, which also
leads to a tight lower bound (5 + ¥¥) for non-
convex online problems, where b := min{ %, n}

Then, we show that PAGE obtains the optimal
convergence results O(n + ¥ (finite-sum) and
O(b+ ¥2) (online) matching our lower bounds
for both nonconvex finite-sum and online prob-
lems. Besides, we also show that for nonconvex
functions satisfying the Polyak-Eojasiewicz (PL)
condition, PAGE can automatically switch to a
faster linear convergence rate O(- log £). Finally,
we conduct several deep learning experiments
(e.g., LeNet, VGG, ResNet) on real datasets in
PyTorch showing that PAGE not only converges
‘much faster than SGD in training but also achieves
the higher test accuracy, validating the optimal
theoretical results and confirming the practical
superiority of PAGE.

1. Introduction

Nonconvex optimization is ubiquitous across many domains
of machine learning, including robust regression, low rank
matrix recovery, sparse recovery and supervised learning

King Abdullah University of Science and Technology, Thuwal,
Kingdom of Saudi Arabia. Correspondence to: Zhize Li
<zhize li@kaust.edu.sa>.

Proceedings of the 38" International Conference on Machine
Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

(Jain & Kar, 2017). Driven by the applied success of deep
neural networks (LeCun et al_, 2015), and the critical place
nonconvex optimization plays in training them, research
in nonconvex optimization has been undergoing a renais-
sance (Ghadimi & Lan, 2013; Ghadimi et al., 2016; Zhou
etal., 2018; Fang et al,, 2018; Li, 2019; Li & Richtdrik,
2020).

1.1 The problem

Motivated by this development, we consider the general
optimization problem

min £(z), )

where f : R? — Ris a differentiable and possibly non-
convex function. We are interested in functions having the
Sinite-sum form

@)= 23 ), )

where the functions f; are also differentiable and possi-
bly nonconvex. Form (2) captures the standard empirical
risk minimization problems in machine learning (Shalev-
Shwartz & Ben-David, 2014). Moreover, if the number of
data samples 7 is very large or even infinite, e.g., in the
online/streaming case, then f (z) usually is modeled via the
online form

£(@) = Ecep[F(2,Q)); (€]

which we also consider in this work. For notational con-
venience, we adopt the notation of the finite-sum form (2)
in the descriptions and algorithms in the rest of this paper.
However, our results apply to the online form (3) as well
by letting f;(z) := F(z,(;) and treating n as a very large
value o even infinite.

12. Gradient complexity

To measure the efficiency of algorithms for solving the
nonconvex optimization problem (1), it s standard to bound
the number of stochastic gradient computations needed to
find a solution of suitable characteristics. In this paper we

Zhize Li, Hongyan Bao, Xiangliang Zhang, and P.R.
PAGE: A simple and optimal probabilistic

gradient estimator for nonconvex optimization
ICML 2021

min €T

Dy =---=1D,

D; = uniform distribution over m outcomes

™m
, 1
min x) = — g filx
rERY m < 1
1=

after butchering/redefining notation)



Table 1: Comparison of the worst-case time complexity guarantees of methods that work with asynchronous
computations in the setup from Section 1 (up to smoothness constants). We assume that 7; € [0, oo] is the bound
on the times required to calculate one stochastic gradient V f; by worker i, 71 < ... < 7, and m > nlogn.
Abbr: 6° := f(2°) — f*, m = # of data samples, n = # of workers, € = error tolerance.

Method Worst-Case Time Complexity Comment
. 0 0 .
Hero GD (Soviet GD) T1m 5? T T 5? ) Suboptimal
Hero PAGE (Soviet PAGE 0 0 /m .
[Liet ag., 2021] ) TIm + T 5? vm (T ™ 4 Ty 5? M) Suboptimal
Limitations:
SYNTHESIS bounded gradient assumption,
[Liu et al., 2022] o calculates the full gradients(a),
suboptimal.(b)
Asynchronous SGD o n -1 5 Limitations:
[Koloskova et al., 2022] 5? < < > _’_i) (T + n) ) o2 -bounded variance assumption,
[Mishchenko et al., 2022] i=1 * suboptimal when € is small.
. -1 Limitations:
Rennala SGD 0 . < < i ) (02 )) 9 . ,
. o °~ min So= e o “-bounded variance assumption,
[Tyurin and Richtrik, 2023] ¢ j€ln] i=1 "4 © suboptimal when € is small.
] -1
J
min | ( 3 - (m + 4)
Freya PAGE Jj€([n] i=1 "¢ Optimal in the large-scale regime,
(Theorems 7 and 8) 50 j 1 -1 ie., v/m > m (see Section 5)
< min D (Vm +3) |©
Jj€[n] i=1 "
. =il
n ((£2) m+s)
min S
Lower bound Jj€[n] i=1 "1
(Theorem 10) j -1
+= min (2 L) (m+3)
vme jeln] \ \i=1 "¢

Freya PAGE has universally better guarantees than all previous methods: the dependence on € is O (1/¢) (unlike Rennala SGD and Asynchronous SGD),
the dependence on {7; } is harmonic-like and robust to slow workers (robust to 7, — o0) (unlike Soviet PAGE and SYNTHESIS),
the assumptions are weak, and the time complexity of Freya PAGE is optimal when /m > n.

@ In Line 3 of their Algorithm 3, they calculate the full gradient, assuming that it can be done for free and not explaining how.

® Their convergence rates in Theorems 1 and 3 depend on a bound on the delays A, which in turn depends on the performance of the
slowest worker. Our method does not depend on the slowest worker if it is too slow (see Section 4.3), which is required for optimality.

©) We prove better time complexity in Theorem 6, but this result requires the knowledge of {7; } in advance, unlike Theorems 7 and 8.



Algorithm 1 Freya PAGE

1: Parameters: starting point z° € R?, learning rate v > 0, minibatch size S € N, probability

p € (0, 1], initialization g° = V f(2°) using ComputeGradient(z")  (Alg. 2)

2: fork=0,1,..., K —1do
3: ghtl = gk — HgF
4:  Sample c* ~ Bernoulli(p)
5: if c* = 1 then (with probability p)
6: V f(z*+1) = ComputeGradient(z**1) (Alg. 2)
7 gkt = V f(zFt1)
8: else (with probability 1 — p)
9: s > (Vfi(z"t1) — Vfi(z*)) = ComputeBatchDifference(S, z**1, z*) (Alg. 3)
i€ Sk
10: gl =g"+ 5 3 (Vfi(z"1) = Vf;(z*))
i1€Sk
11: end if
12: end for

(note): S¥ is a set of i.i.d. indices that are sampled from [m)], uniformly with replacement,

Sk =5




Algorithm 2 ComputeGradient(x) Algorithm 3 ComputeBatchDifference(S, x, y)

s

ke

13:

YR

Input: point z € R¢ 1: Input: batch size S € N, points z,y € R¢
Init g = 0 € RY, set M = () 2: Init g =0 € R?
Broadcast x to all workers 3: Broadcast x, y to all workers
For each worker ¢ € [n], sample j from [m]| 4: For each worker, sample j from [m| uniformly
uniformly and ask it to calculate V f; (z) and ask it to calculate V f;(x) — V f;(y)
while M # [m] do 5: fori=1,2,...,5do
Wait for V f,,(x) from a worker 6: Wait for V f,,(z) — V f,(y) from a worker
if p € [m]\ M then 7. g+ g+ (Vi) — Vip(y))
g g+ =Vf(x) 8: Sample j from [m] uniformly and ask
Update M < M U {p} this worker to calculate V f;(z) — V f;(y)
end if 9: end for

Sample j from [m]|\ M uniformly and ask 10: Return g
this worker to calculate V f; ()
end while

Notes: i) the workers can aggregate V f,, locally, and the algorithm can

1 m call AlIReduce once to collect all calculated gradients. i1) By splitting

Return 9=, Z Vf 1 (:U ) [m] into blocks, instead of one V f,, we can ask the workers to calculate
=1

the sum of one block in Alg. 2 (and use a similar idea in Alg. 3).




Freya PAGE: Experiment 1

=¥-— Asynchronous SGD: Step size: 3.0517578125e-05 —_— =¥— Asynchronous SGD: Step size: 3.0517578125e-05
== Asynchronous SGD: Step size: 6.103515625e-05 == Asynchronous SGD: Step size: 1.52587890625e-05
—4— Soviet PAGE: Step size: 1.0 —— —4¢~ Soviet PAGE: Step size: 1.0 ——
=p— Soviet PAGE: Step size: 0.5 =P Soviet PAGE: Step size: 0.5
{{}~ Rennala SGD: BS: 120 Step size: 0.0078125 T—— {f~ Rennala SGD: BS: 80 Step size: 0.0078125 ——
@~ Rennala SGD: BS: 120 Step size: 0.015625 @~ Rennala SGD: BS: 120 Step size: 0.015625
== Freya PAGE: Step size: 1.0 D ==~ Freya PAGE: Step size: 0.5
== Freya PAGE: Step size: 0.5 —e= Freya PAGE: Step size: 0.25
0 100000 200000 300000 400000 500000 0 100000 200000 300000 400000 500000
times (seconds) times (seconds)

(a) n = 1000 (b) n = 10000

Figure 1: Experiments with nonconvex quadratic optimization tasks. We plot function suboptimality
against elapsed time.
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Freya PAGE: Experiment 2
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Figure 2: Experiments with the logistic regression problem on the MNIST dataset.



Freya PAGE: Experiment 2

Table 2: Mean and variance of algorithm accuracies on the MNIST test set during the final 100K
seconds of the experiments from Figure 2b.

Method Accuracy Variance of Accuracy
Asynchronous SGD
[Koloskova et al., 2022] 92.60 5.85e-07
[Mishchenko et al., 2022]
Soviet PAGE
[Li et al., 2021] 92.31 1.62e-07
Rennala SGD 92.37 3.12¢-06

[Tyurin and Richtérik, 2023]
Freya PAGE 92.66 1.01e-07




Amelie SGD

-~ Amelie

>

Optimal SGD
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Decentralized Setup: Amelie SGD

Method The Worst-Case Time Complexity Guarantees Comment
2
Minibatch SGD % max { (1 + ‘;—E) max{ 'rr_lea[x] Ti—js n’elé[lx] hz}} suboptimal if 02/6 is large
1,]E€ N 1E€[(Nn
RelaySGD, Gradient Tracking max LiA requires local L ;-smooth. of f;,
(Vogels et al., 2021) > S [n]s -— max h; suboptimal if 02/ e 1s large
(Liu et al., 2024) i€ln] (even if max;c(n) L; = L)
Asynchronous SGD requires similarity of the functions { f; },
(Even et al., 2024) o requires local L ;-smooth. of f;
Amell(e T%(IBHD ?I;ié,ocvgrerzliound LsA max { 'mea[x] Tisj neu[lx] hi, Z—i (% > hi) } Optimal up to a constant factor
. . 1, n (] n =1




The End
(for real)



