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Convex Feasibility




Convex Feasibility Problem

Nonempty closed convex set

Find x € C C R"



Applications

communications, optics, neural networks, image processing (Stark-Yang ‘98)
color imaging (Sharma ‘00)

magnetic resonance imaging (Samsonov-Kholmovski-Parker-lohnson ‘04)
wavelet-based denoising (Choi-Baraniuk ‘04)

antenna design (Gu-Stark-Yang ‘04)

data compression (Liew-Yan-Law ‘05)

sensor networks problems (Blatt-Hero ‘06)

intensity modulated radiation therapy (Herman-Chen ‘08)
computerized tomography (Herman ‘09)

demosaicking (Lu-Karzand-Vetterli ‘10)



Algorithms

linear equations (kaczmarz 37)
linear inequalities (viotzkin-Shoenberg '54, Censor et al ‘11)

convex feasibility (Polyak-Gubin-Raik ‘67), (Bauschke-Borwein ‘96),
(Combettes ‘96)

random methods (Nedic’10, ‘11)

monotone operators viewpoint (Bauschke-Combettes ‘11)
conic feasibility (Henrion ‘1)

review book (Escalante-Raydan ‘11)



Motivation 1

Normalized proximity function in dB
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Extrapolated (alternating/parallel) projection methods are much better in
practice than non-extrapolated variants, but there is no theory that supports

this empirical observation. (Censor-Chen-Combettes-Davidi-Herman ‘11)



Motivation 2
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|IAG -> SAG by (LeRoux-Schmidt-Bach ‘12)

Randomized variants of deterministic methods are easier to analyze, and
often lead to better complexity and practical behavior. Develop and analyze
randomized parallel projection methods.



Plan

We design and analyze randomized versions of
projection methods

Our rates explain why extrapolation helps

Existing extrapolation rules are interpretable by our
theory as online numerical approximations of a certain

long-stepsize rule

Our approach will involve new ideas, such as:
— Stochastic approximation of convex sets
— Stochastic reformulations of convex feasibility

— Our algorithm: SGD / stochastic fixed point method /
stochastic projection method (+ minibatching)

— Sublinear (always) and linear rates (sometimes)




Our Goal
Find x € C C R"

Deterministic Algorithm Randomized Algorithm

dists(z) < e E [distg(z)] < e

s, e
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€T = (1l —a)r. + a— E [Ic (x
k+1 ( ) k - Skz< k:)

Minibatch size: 7 =1
Stepsize: a=1
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Stochastic

~ Approximation of Sets




Stochastic Approximation of Sets

Definition

Let C C R” be a closed and convex set. Let (£2,3, P) be a probability
space and consider a mapping S :  — 28",

If
1. S(w) is closed and convex for all w € €,
2. C C S(w) for all w € Q,
3. w> dist?g(w)(x) is measurable for all z € R™,

then we say that (€2, %, P,S) is a stochastic approximation of C.

reC = xS = Es.p[dists(z)]=0
If, moreover,

Es.p[dists(z)]=0 < z€C,

then we say that the approximation is exact.



Stochastic Approximation of Sets:
Intersection

S = C with probability 1

S = C; with probability p; > 0

S = ﬂ C; with probability ps > 0
€S



Stochastic Approximation of Sets:

Linear Systems
Ci:{xER” : AZCCZbZ}

C={zeR" : Az=0b}=()C
1=1

Trivial S = C with probability 1

Natural S = C; with probability p; > 0

Composite S = ﬂ C; with probability pg > 0
i€S

Sketch S={zeR"”: S'TAz=STb}

Random matrix



Stochastic Approximation of Sets:

System of Linear Inequalities

C={zeR” : Az <b}=[)C
1=1

Trivial S = C with probability 1

Natural S = C; with probability p; > 0

Composite S = ﬂ C; with probability pg > 0
i€S

Sketch S={reR”: S"Ax <S"b}

Random vector with nonnegative entries



Stochastic

Reformulations
Convex Feasibili




Stochastic Reformulations
of Convex Feasibility

def .
fs(x) = 3dists(z) = § ]|z — s ()]

Stochastic Optimization Problem (SOP)

Minimize f(z) < Esp|fs(z)

Stochastic Fixed Point Problem (SFPP)
Solve x = Egp |Ils(x)]

Stochastic Feasibility Problem (SFP)
Find x € R™ such that P(z € §) =1

In the case of linear feasibility, these reformulations were studied in (R-Takac ’17)



Equivalence & Exactness

Theorem (Equivalence)

The three stochastic reformulations of the convex feasibility problem have
the same solution sets:

y def : : : :
C C C" = minimizers of SOP = fixed points of SFPP = solutions of SFP

Theorem (Exactness)
du > 0 such that for all x € R":

o = Te(@)|? < Bsp | - s ()]

.

C=C



Assumption

Assumption (stochastic linear regularity)
Ju > 0 such that for all x € R":

o = He(@)|? < Bsp [||lz — Ts(@)]*

Also define: Jensen inequality: L <1

[Bs~rp [z~ Hs@)|* < L-Eswp ||z - s(x)|?]

<L <1



Stochastic Algorithms




“Basic” Method

Minimize f(z) = Es.p|fs(@)]

Stochastic Gradient Descent

Lk+1 — Tk — CVVfSk (ZEk)

Solve x = Esp [Ils(x)]
Stochastic Fixed Point Method

Tht1 — (1 — Oé).CIj‘k a4 aHSk (Zl?k)

Find x € R" such that P(x € §) =1
Stochastic Projection Method

Tht1 = (1 — Oé)il’ik -+ Oéﬂsk (Cli‘k)



“Parallel” Method

Minibatch size

Stochastic Gradient Descent
T
1
Lhk+1 — Lk — O‘; E vf&m (:Ek)
1=1

Minibatch size Stochastic Fixed Point Method
Stochastic Projection Method

1 T
— (1 — -3 g,
Tla1 ( Oé)ill']g + OéT £ S (.Cll'k)
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€T = (1l —a)r. + a— E [Ic (x
k+1 ( ) k - Skz< k:)

Minibatch size: 7 =1
Stepsize: a=1
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1 T
= (1 — — Ils
Try1 = (1 — a)zr + a Z_: Sui (Tk)

Minibatch size: 7 = 2 i—1

Stepsize: a=1

5



1 T
— (1 — — IIs, .
Zrt1 = (1 = a)ag +a E Si: (Tk)

Minibatch size: 7 = 2 —1

Stepsize: o =2

Zo




Convergence Results




Sublinear Convergence

(no need to assume linear regularity)

Theorem With stepsize ¢ = 1/L7- , we get:

By — % Do Ly =141 — Ly
. R 1_j . R LTdiStz L0
V) [f(a:k)] — 5_3 [dlst?g(a:k)] < 2]5( )

Let (2,3, P,S) is a stochastic approximation of C



Linear Convergence

(assuming linear regularity)

Theorem With stepsize ¢ = 1/L7- , we get:

1 1
Linear regularity parameter L, = = T (1 — ?)L

5 [distg (zr)] <
E[f(zk)] <

/L ) diStg(CE‘o)
(1 /L) dist? (o)

w|b4"\

Best current rate of “paralle!” projection method for convex feasibility

» Sketch approximations for linear systems (R.-Takac “17) obtained as a special case
* Natural approximations for convex sets & 7 = 1 done in (Nedic ‘11)



Extrapolation Rules =
Approximation of L

Optimal stepsize: (X — 1/L7-

VR

E P 1112
L = sup |E Lz s(z) H2
22 B |||z — ()]

Online approximation of L:

£ i [ — sy, (o k)]HQ
LSl = s, ()|

L ~




Summary

 New approach to convex feasibility via:
— Stochastic approximation of convex sets
— Stochastic reformulations

e Stochastic optimization
e Stochastic fixed point
* Stochastic feasibility

— Natural algorithms for the stochastic reformulations

* First rate of a parallel projection method which is
better than the rate of the non-parallel version

* Sheds light on the empirical success of extrapolated

parallel projection methods (censor-Chen-Combettes-Davidi-
Herman ‘11)






