

Randomized Projection Methods for Convex Feasibility Problems

Peter Richtárik
joint work with Ion Necoara and Andrei Patrascu
arXiv:1801.04873

ISMP 2018 - Bordeaux - July 5, 2018

Convex Feasibility

Convex Feasibility Problem

Nonempty closed convex set

Find
$$x \in \mathcal{C} \subseteq \mathbb{R}^n$$

Applications

- communications, optics, neural networks, image processing (Stark-Yang '98)
- color imaging (Sharma '00)
- magnetic resonance imaging (Samsonov-Kholmovski-Parker-Johnson '04)
- wavelet-based denoising (Choi-Baraniuk '04)
- antenna design (Gu-Stark-Yang '04)
- data compression (Liew-Yan-Law '05)
- sensor networks problems (Blatt-Hero '06)
- intensity modulated radiation therapy (Herman-Chen '08)
- computerized tomography (Herman '09)
- demosaicking (Lu-Karzand-Vetterli '10)

Algorithms

- linear equations (Kaczmarz '37)
- linear inequalities (Motzkin-Shoenberg '54, Censor et al '11)
- convex feasibility (Polyak-Gubin-Raik '67), (Bauschke-Borwein '96), (Combettes '96)
- random methods (Nedic '10, '11)
- monotone operators viewpoint (Bauschke-Combettes '11)
- conic feasibility (Henrion '11)
- review book (Escalante-Raydan '11)

Motivation 1

Extrapolated (alternating/parallel) projection methods are much better in practice than non-extrapolated variants, but **there is no theory that supports this empirical observation.** (Censor-Chen-Combettes-Davidi-Herman '11)

Motivation 2

IAG -> SAG by (LeRoux-Schmidt-Bach '12)

Randomized variants of deterministic methods are easier to analyze, and often lead to better complexity and practical behavior. **Develop and analyze randomized parallel projection methods.**

Plan

- We design and analyze randomized versions of projection methods
- Our rates explain why extrapolation helps
- Existing extrapolation rules are interpretable by our theory as online numerical approximations of a certain long-stepsize rule
- Our approach will involve new ideas, such as:
 - Stochastic approximation of convex sets
 - Stochastic reformulations of convex feasibility
 - Our algorithm: SGD / stochastic fixed point method / stochastic projection method (+ minibatching)
 - Sublinear (always) and linear rates (sometimes)

Our Goal

Find
$$x \in \mathcal{C} \subseteq \mathbb{R}^n$$

Deterministic Algorithm

Deterministic Algorithmi

$$\operatorname{dist}_{\mathcal{C}}^{2}(x) \leq \epsilon$$

Deterministic vector output by the algorithm

Randomized Algorithm

Expectation with respect to the randomness of the algorithm

$$\operatorname{E}\left[\operatorname{dist}_{\mathcal{C}}^{2}(x)\right] \leq \epsilon$$

Random vector output by the algorithm

 $x_{k+1} = (1 - \alpha)x_k + \alpha \frac{1}{\tau} \sum_{i=1}^{\tau} \Pi_{S_{ki}}(x_k)$

Stochastic Approximation of Sets

Stochastic Approximation of Sets

Definition

Let $C \subseteq \mathbb{R}^n$ be a closed and convex set. Let (Ω, Σ, P) be a probability space and consider a mapping $S : \Omega \to 2^{\mathbb{R}^n}$.

If

- 1. $S(\omega)$ is closed and convex for all $\omega \in \Omega$,
- 2. $C \subseteq S(\omega)$ for all $\omega \in \Omega$,
- 3. $\omega \mapsto \operatorname{dist}_{\mathcal{S}(\omega)}^2(x)$ is measurable for all $x \in \mathbb{R}^n$,

then we say that $(\Omega, \Sigma, P, \mathcal{S})$ is a stochastic approximation of \mathcal{C} .

$$x \in \mathcal{C} \implies x \in \mathcal{S} \implies \mathcal{E}_{\mathcal{S} \sim P}[\operatorname{dist}_{\mathcal{S}}^{2}(x)] = 0$$

$$E_{\mathcal{S} \sim P}[\operatorname{dist}_{\mathcal{S}}^2(x)] = 0 \quad \Leftrightarrow \quad x \in \mathcal{C},$$

then we say that the approximation is exact.

Stochastic Approximation of Sets: Intersection

 $C = \bigcap_{i=1}^{m} C_i$

Exact

- 1 Trivial
- Natural
- 3 Composite

S = C with probability 1

 $S = C_i$ with probability $p_i \ge 0$

 $S = \bigcap_{i \in S} C_i \text{ with probability } p_S \ge 0$

Stochastic Approximation of Sets: Linear Systems

$$C_i = \{x \in \mathbb{R}^n : \mathbf{A}_{i:} x = b_i\}$$

$$\mathcal{C} = \{x \in \mathbb{R}^n : \mathbf{A}x = b\} = \bigcap_{i=1}^m \mathcal{C}_i$$

- 1 Trivial $\mathcal{S} = \mathcal{C}$ with probability 1
- Natural $\mathcal{S} = \mathcal{C}_i \text{ with probability } p_i \geq 0$
- Somposite $S = \bigcap_{i \in S} C_i$ with probability $p_S \geq 0$
- Sketch $\mathcal{S} = \{x \in \mathbb{R}^n : \mathbf{S}^\top \mathbf{A} x = \mathbf{S}^\top b\}$

Random matrix

Stochastic Approximation of Sets: System of Linear Inequalities

$$C_i = \{x \in \mathbb{R}^n : \mathbf{A}_{i:} x \le b_i\}$$

$$\mathcal{C} = \{x \in \mathbb{R}^n : \mathbf{A}x \le b\} = \bigcap_{i=1}^m \mathcal{C}_i$$

- 1 Trivial $\mathcal{S} = \mathcal{C} ext{ with probability } 1$
- Natural $\mathcal{S} = \mathcal{C}_i \text{ with probability } p_i \geq 0$
- Somposite $S = \bigcap_{i \in S} C_i$ with probability $p_S \ge 0$
- Sketch $\mathcal{S} = \{x \in \mathbb{R}^n : \mathbf{S}^\top \mathbf{A} x \leq \mathbf{S}^\top b\}$

Stochastic Reformulations of Convex Feasibility

Stochastic Reformulations of Convex Feasibility

$$f_{\mathcal{S}}(x) \stackrel{\text{def}}{=} \frac{1}{2} \text{dist}_{\mathcal{S}}^2(x) = \frac{1}{2} ||x - \Pi_{\mathcal{S}}(x)||^2$$

Stochastic Optimization Problem (SOP)

Minimize
$$f(x) \stackrel{\text{def}}{=} \mathcal{E}_{\mathcal{S} \sim P}[f_{\mathcal{S}}(x)]$$

Stochastic Fixed Point Problem (SFPP)

Solve
$$x = E_{S \sim P} [\Pi_S(x)]$$

Stochastic Feasibility Problem (SFP)

Find
$$x \in \mathbb{R}^n$$
 such that $P(x \in \mathcal{S}) = 1$

In the case of linear feasibility, these reformulations were studied in (R-Takáč '17)

Equivalence & Exactness

Theorem (Equivalence)

The three stochastic reformulations of the convex feasibility problem have the same solution sets:

$$\mathcal{C} \subseteq \mathcal{C}' \stackrel{\mathrm{def}}{=}$$
 minimizers of SOP = fixed points of SFPP = solutions of SFP

Theorem (Exactness)

 $\exists \mu > 0$ such that for all $x \in \mathbb{R}^n$:

$$\mu \cdot \|x - \Pi_{\mathcal{C}}(x)\|^2 \le \mathbb{E}_{\mathcal{S} \sim P} \left[\|x - \Pi_{\mathcal{S}}(x)\|^2 \right]$$

$$\mathcal{C} = \mathcal{C}'$$

Assumption

Assumption (stochastic linear regularity)

 $\exists \mu > 0 \text{ such that for all } x \in \mathbb{R}^n$:

$$\mu \cdot \|x - \Pi_{\mathcal{C}}(x)\|^2 \le \mathbf{E}_{\mathcal{S} \sim P} \left[\|x - \Pi_{\mathcal{S}}(x)\|^2 \right]$$

Also define:

Jensen inequality:
$$L \leq 1$$

$$\|\mathbf{E}_{\mathcal{S}\sim P}\left[x - \Pi_{\mathcal{S}}(x)\right]\|^2 \le L \cdot \mathbf{E}_{\mathcal{S}\sim P}\left[\|x - \Pi_{\mathcal{S}}(x)\|^2\right]$$

$$\mu \leq L \leq 1$$

Stochastic Algorithms

"Basic" Method

Minimize
$$f(x) \stackrel{\text{def}}{=} \mathcal{E}_{\mathcal{S} \sim P}[f_{\mathcal{S}}(x)]$$

Stochastic Gradient Descent

$$x_{k+1} = x_k - \alpha \nabla f_{\mathcal{S}_k}(x_k)$$

Solve $x = \mathbb{E}_{\mathcal{S} \sim P} \left[\Pi_{\mathcal{S}}(x) \right]$

Stochastic Fixed Point Method

$$x_{k+1} = (1 - \alpha)x_k + \alpha \Pi_{\mathcal{S}_k}(x_k)$$

Find $x \in \mathbb{R}^n$ such that $P(x \in \mathcal{S}) = 1$

Stochastic Projection Method

$$x_{k+1} = (1 - \alpha)x_k + \alpha \Pi_{\mathcal{S}_k}(x_k)$$

"Parallel" Method

Minibatch size

Stochastic Gradient Descent

$$x_{k+1} = x_k - \alpha \frac{1}{\tau} \sum_{i=1}^{\tau} \nabla f_{\mathcal{S}_{ki}}(x_k)$$

Minibatch size

Stochastic Fixed Point Method Stochastic Projection Method

$$x_{k+1} = (1 - \alpha)x_k + \alpha \frac{1}{\tau} \sum_{i=1}^{\tau} \Pi_{\mathcal{S}_{ki}}(x_k)$$

 $x_{k+1} = (1 - \alpha)x_k + \alpha \frac{1}{\tau} \sum_{i=1}^{\tau} \Pi_{S_{ki}}(x_k)$

Convergence Results

Sublinear Convergence

(no need to assume linear regularity)

Theorem With stepsize
$$\alpha=1/L_{\tau}$$
 , we get:
$$L_{\tau}=\frac{1}{k}\sum_{t=0}^{k-1}x_{t}$$

$$L_{\tau}=\frac{1}{\tau}+(1-\frac{1}{\tau})L$$

$$\mathrm{E}\left[f(\hat{x}_{k})\right]=\frac{1}{2}\mathrm{E}\left[\mathrm{dist}_{\mathcal{S}}^{2}(\hat{x}_{k})\right]\leq\frac{L_{\tau}\mathrm{dist}_{\mathcal{C}}^{2}(x_{0})}{2k}$$

Let $(\Omega, \Sigma, P, \mathcal{S})$ is a stochastic approximation of \mathcal{C}

Linear Convergence

(assuming linear regularity)

Theorem With stepsize
$$\alpha=1/L_{\tau}$$
 , we get:
$$L_{\tau}=\frac{1}{\tau}+(1-\frac{1}{\tau})L$$

$$\mathrm{E}\left[\mathrm{dist}_{\mathcal{C}}^{2}(x_{k})\right]\leq(1-\mu/L_{\tau})^{k}\,\mathrm{dist}_{\mathcal{C}}^{2}(x_{0})$$

$$\mathrm{E}\left[f(x_{k})\right]\leq\frac{L}{2}\left(1-\mu/L_{\tau}\right)^{k}\,\mathrm{dist}_{\mathcal{C}}^{2}(x_{0})$$

Best current rate of "parallel" projection method for convex feasibility

- Sketch approximations for linear systems (R.-Takáč '17) obtained as a special case
- Natural approximations for convex sets & au=1 done in (Nedic '11)

Extrapolation Rules = Approximation of *L*

Optimal stepsize:
$$\alpha = 1/L_{\tau}$$

$$L = \sup_{x \notin \mathcal{C}} \frac{\|\mathrm{E}\left[x - \Pi_{\mathcal{S}}(x)\right]\|^2}{\mathrm{E}\left[\|x - \Pi_{\mathcal{S}}(x)\|^2\right]}$$

Online approximation of *L*:

$$L \approx \frac{\left\| \frac{1}{\tau} \sum_{i=1}^{\tau} \left[x_k - \Pi_{\mathcal{S}_{ki}}(x_k) \right] \right\|^2}{\frac{1}{\tau} \sum_{i=1}^{\tau} \left[\left\| x_k - \Pi_{\mathcal{S}_{ki}}(x_k) \right\|^2 \right]}$$

Summary

- New approach to convex feasibility via:
 - Stochastic approximation of convex sets
 - Stochastic reformulations
 - Stochastic optimization
 - Stochastic fixed point
 - Stochastic feasibility
 - Natural algorithms for the stochastic reformulations
- First rate of a parallel projection method which is better than the rate of the non-parallel version
- Sheds light on the empirical success of extrapolated parallel projection methods (Censor-Chen-Combettes-Davidi-Herman '11)

The End