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Data Science and Machine Learning

Data: Anything collected/recorded in digital form of

potential value

e Text, music, video, images, scans, databases, health
records, tax data, email, online clicks, tweets, blogs, ...

e Usually modelled statisically, or as a signal
Data Science: Extraction of knowledge from data

Machine Learning: Automated learning from available
data to make predictions & decisions about unseen data
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Big Data

Too much hype?

“Big data opens the door to a new approach to
understanding the world and making
decisions” (New York Times, 2013)

“Don’t be colonized by the Americans with
their big data, colonize them” (Cathal
MacSwiney Brugha, 8.9.2016)

Data that can’t be stored on a “typical system” or
analyzed via “normal procedures”

What to do with huge quantities of data?
* New models
* New algorithms
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Optimization & Big Data

Conference Series

e Established & run in Edinburgh in
2012, 2013, 2015, 2017

Optimization plays a key role in big
data analysis

 Machine Learning = Stochastic
Optimization (Srebro)

* Optimization is used to train ML

WORKSHOP, TREK & COLLOQUIUM

mOdels : MAY 1-3, 2013 EDINBURGH

e Optimization used in discovering
new data representations

 Optimization used in turning
extracted knowledge into action



Optimization Objective
in Big Data Problems

Objective is formed from collected data, and hence
is not a “precise object”

* Low to medium accuracy solutions are fine!
 What methods can find rough solutions quickly?

Objective often simple

* The more data we have, the less modeling we
should do: “the model is in the data”

e Typically: Data-fitting term + Prior knowledge

term .
min, 3| Az — b]|3 + Al|z |3







Application Areas

Natural language processing
— speech recognition
Text processing
— text prediction, recognition, machine translation, spam filtering
Image & video processing
— deblurring, denoising, inpainting, face detection and recognition
Social networks
— community detection, geo-tagging of tweets
Public records analysis
— tax data, financial records, health records
Online advertising
— ad allocation, ad pricing
Scientific measurements

— truss topology design, inverse problems, data assimilation, gene
expression analysis,
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Image Deblurring

Amir Beck and Marc Teboulle. A Fast Iterative Shrinking-Thresholding
! Algorithm for Linear Inverse Problems. SIAM J. Imaging Sciences 2(1),
e 183-202, 2009

Jakub Konecny, Jie Liu, P.R., Martin Takac¢. Mini-Batch Semi-Stochastic
! Gradient Descent in the Proximal Setting. /IEEE Journal of Selected
" Topics in Signal Processing 10(2), 242-255, 2016




Image Deblurring: “LASSO”
Problem

O

blurred image

min —HA?E — b5 + AH$H1
rER™ 2

image

# pixels in Blurring matrix
the image multiplied by a
wavelet basis matrix

Encourages sparsity
in the wavelet basis



Truss Topology Design

35

P.R. and Martin Takac. Efficient Serial and Parallel Coordinate Descent
i Methods for Huge-Scale Truss Topology Design. Operations Research
—M= - proceedings, pp 27-32, 2012




Truss Topology Design:
“LASSO” Problem

Encodes all 0!
potential bars I

min —HA?L‘ = b5 + Azl
rER™ 2

\ I . J
| |

Least-squares L1 norm
# potential bars (convex, smooth, (convex, nonsmooth,
(quadratic in guadratic) but “simple”)

mesh size)



Image Segmentation

E Adobe

Olivier Fercog and P.R. Accelerated, Parallel and Proximal Coordinate
Descent. SIAM Journal on Optimization 25(4), 1997-2023, 2015

=
o
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Alina Ene and Huy L. Nguyen. Random Coordinate Descent Methods
for Minimizing Decomposable Submodular Functions. /CML 2015




Image Segmentation:
Reformulated Submodular

Optimization
1 ||— i
. . . 1 Smooth, convex,
minimaize 5 E X e
1=1

subject to e P i=12....n

# polytope grows with the
image size



Predicting Expert Moves in Go

B -O: AlphaGo  Lee Sedol
N
PSS

E Adobe

Silver et al. Mastering the Game of Go with Deep Neural Networks
and Tree Search. Nature 529, pp 484-489, 2016
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Go: Training a Neural Network

. : N ‘ &1 i
) hidden layver 1 hidden layver 2 hidden laver 3
input layer
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Go: Training a Neural Network

nis big
average loss (# of training
data points)

reRA

min { F(x) = %Zfz(a:)

# parameters
representing the
network

loss functions



Face Detection




Recommender Systems

\(i1] Tube coldplay Q Upload m

Mix - Playlist Coldplay - Top 21
Coldplay Songs

A
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Best Of Lana Del Rey (+ Remixes)-
7 Audio + Video Megamix (2012)

Lana Del Rey - Born To Die The
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Playlist Coldplay - Top 21 Coldplay Songs m U2 - The Best of 1980-1990 (Full




Geotagging Tweets

Cornell University
Library

o

arXiv.org > cs > arXiv:1404.7152

Computer Science > Social and Information Networks

Geotagging One Hundred Million Twitter Accounts with
Total Variation Minimization

Ryan Compton, David Jurgens, David Allen
(Submitted on 28 Apr 2014)

Geographically annotated social media is extremely valuable for modern information retrieval.
However, when researchers can only access publicly-visible data, one quickly finds that social
media users rarely publish location information. In this work, we provide a method which can
geolocate the overwhelming majority of active Twitter users, independent of their location
sharing preferences, using only publicly-visible Twitter data.

Our method infers an unknown user's location by examining their friend's locations. We frame
the geotagging problem as an optimization over a social network with a total variation-based
objective and provide a scalable and for its solution. Furthermore, we
show how a robust estimate of the geographic dispersion of each user's ego network can be
used as a per-user accuracy measure, allowing us to discard poor location inferences and






Spam Filtering




Ranking
GO\ ’Sle big optimization

Web Videos Images News Shopping More ~ Search tools

About 101,000,000 results (0.27 seconds)

100% Uptime for Hadoop - wandisco.com
%) www.wandisco.com/hadoop ~

No Downtime No Data Loss No Latency 100% reliable realtime availability

Optimization and Big Data

www.maths_ed ac.uk/~prichtar/Optimization_and_Big_Data/ ~

The age of Big Data is here: data of huge sizes is becoming ubiquitous. With this comes
the need to solve optimization problems of unprecedented sizes.

Optimization and Big Data - School of Mathematics ...
www.maths_ed.ac_uk/~prichtar/Optimization_and_Big.. /schedule html ~
Big data optimization at SAS. 14:30-15:10, Olivier Fercoq (Edinburgh, UK).

IBM - Business Analytics and Optimization - Big Data ...

www.ibm_com/services/us/gbs/business-analytics/ ~ |IBM ~
Business analytics and big data consulting services from IBM help discover predictive
insights and turn them into operational reality to close the gap between ..



Application in Focus

Training Linear Predictors

il
77

“Predict based on past observations”

e 4 - o’l. o




Statistical Nature of Data

(A;,yi) ~ Distribution

DATA

Ehe New Aork Eimes

LABEL

“politics”

Yi c R™




Prediction of Labels from Data

Find w € ]Rd Linear predictor

such that when a (data, label) pair is drawn
from the distribution

(A;,y;) ~ Distribution

then T
A w =y,

(/
Predicted label True label



Measure of Success

loss(a, b)

Predicted label True label

We want the expected loss (=risk) to be small:

E [loss(A; w,y;)]

(A;,y;) ~ Distribution



Replace Expectation by Average

Draw i.i.d. data samples from the distribution

(A1,91), (A2,y2), ..., (An,yn) ~ Distribution

Output predictor which minimizes the empirical risk:

min — Zl()ss (A w,y;)

weERE M



Minimize the Average of a Large
Number of Functions

nis big

min {F(x) = % Zfi(w)}






Optimization with Big Data

= Extreme* Mountain Climbing

A ‘ -

ensional space on a foggy day




God’s Algorithm = Teleportation




Mortals Have to Walk...
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Algorithmic Tricks

Gradient descent

Handling nonsmoothness via the proximal trick
Acceleration

Randomized decomposition
Parallelism/Minibatching & Sparsity
Distributed computation

Importance sampling

NouswNE

All these tricks can be combined!

There are more tricks: duality, variance reduction,
asynchrony, curvature, ...



Brief, Biased and Severely Incomplete
History of Big Data Optimization

“ . ” “Duality & randomization combined”
Randomization helps (Shalev-Shwartz & Zhang)
Gradient (Strohmer & Vershynin,

Leventhal & Lewis, Shalev-

descent Age of I Parallelism, randomlze!tlon”&
(Cauchy) Interior-point Nesterov, R. & Tiakac) nonsmoothness f:f)mblned
methods (R. & Takac)

)
! \

1847 1984 ‘09-"11 12 ‘13
1983 Y
New tricks:
“Nonsmooth min can “Acceleration, parallelism, Importance sampling,
Accelerated Asvnch Distributed
be as easy as smooth nonsmoothness & synchrony, Distribute

gradient descent

(Nesterov) minimization” randomization combined” computation, Federated

(Nesterov) (Fercoq & R.) Optimization, Nonconvexity,
return of 2" order methods,



Tool 1

Gradient Descent (1847)

“Just follow a ball rolling
e dc_)wn the hill”




Augustin Cauchy
Méthode générale pour la résolution des systemes d'équations
simultanées, pp. 536-538, 1847




min,, -

2a F'(x)




Gradient Descent (GD)

Thal = Tk — 7 VF(xk)

e \N # lteratio samber of

b

\\\\\\\\\ F(xk) T,) < €




Acceleration (1983/2003)

| “Gradient descent can be
- _made much faster!”




Acceleration Works (Mysteriously)

error

A

10—1
102
103
104
107°
10~
10~ 7
10~8
10—
10—10

GD

AGD

# gradient evaluations



Acceleration

Reignited interest in gradient methods

Usage in all areas of data science (called momentum in deep neural
networks literature)

Oscilation can be tamed (e.g., by restarting)

Can be combined with other tricks
— Duality [Shai-Shalev Shwartz & Zhang 2013]
— Randomized decomposition, Parallelism, Proximal trick [Fercoq & R 2013]

Yurii Nesterov
Introductory lectures on convex optimization: a basic course
Adobe Kluwer, Boston, 2003

Yurii Nesterov
A method for unconstrained convex minimization problem with the
~ rate of convergence O(1 / k"2)
Adobe  Soviet Math. Doclady 269, 543-547, 1983




Tool 3

Proximal Trick (2004)

“Some nonsmooth
' problems are as easy
~_as smooth problems”




The Problem

min,pa F(x) + G(x)



Proximal Gradient Descent (PGD)

STEP 1: Pretend thereisno G
ki1 = T — %VF(xk)

STEP 2: Take a “proximal” step with respect to G

Trpt+1 = argming =||z — zp1||* + +G(x)

Gradient Descent is a special case for G=0

Even though this is a nonsmooth problem, L 1 (1/ )
# steps is the same as for Gradient Descent!!! 7 08 €

Efficient if Step 2 is easy to do



Example: Projected Gradient Descent

mingcg F(x) < ming F

—

STEP 1

-

STEP 2

e <k+1




Tool 4

Randomized

Decomposition
“Doing many simple decisions
~_is better than |
ing a few smart ones”




Why Randomize?

T T A N T AN YA VAN YL & Y - v '
s ,}\;/""\ 1’) . 2 2w 4 ’/ o D D “ 1 " 3 ‘

Analysis ff Convergence i Applications |

“It’s better to perform steps
using partial (random) data
than using all data”

»




Stochastic Gradient
Descent

L\ H. Robbins and S. Monro
A Stochastic Approximation Method
Adobe Annals of Mathematical Statistics 22, pp. 400-407, 1951




The Problem

nis big

min {F(x) = % Zfi(x)}



Stochastic Gradient Descent (SGD)

stepsize

* Update rule:
Tit1 = Tk — heV fi(xk)

EV fi(z)] = VF(z)
 Complexity:

i = chosen uniformly
at random

# stochastic

« Cost of a single iteration: 1 . .
gradient evaluations



error

Stochastic Gradient Descent
vs Gradient Descent

# gradient evaluations



2014 OR Society Doctoral Prize

Randomized
Coordinate Descent

P.R. and Martin Takac
Iteration Complexity of Randomized Block Coordinate Descent

. Methods for Minimizing a Composite Function
Adobe 10 thematical Programming 144(2), 1-38, 2014

INFORMS Computing Society Best Student Paper Prize (runner up), 2012

2014 OR Society Doctoral Prize




The Problem

In F
)

Size of x is BIG

smooth



Randomized Coordinate Descent in 2D




Randomized Coordinate Descent in 2D




Randomized Coordinate Descent in 2D




Randomized Coordinate Descent in 2D




Randomized Coordinate Descent in 2D




Randomized Coordinate Descent in 2D




Randomized Coordinate Descent in 2D




Randomized Coordinate Descent in 2D




Randomized Coordinate Descent

# gradient evaluations



1 Billion Rows & 100 Million Variables

= R109><108

k/n || F(xk)— F* | # nonzeros in xj | time [s]

0.01 < 1018 18,486 1.32

9.35 < 1014 99,837,255 | 1294.72
11.97 < 1013 99,567,891 | 1657.32
14.78 < 1012 98,630,735 | 2045.53
17.12 < 1011 96,305,090 | 2370.07
20.09 < 1010 86,242,708 | 2781.11
22.60 < 109 58,157,883 | 3128.49
24.97 < 108 19,926,459 | 3455.80
28.62 < 107 747,104 | 3960.96
31.47 < 106 266,180 | 4325.60
34.47 < 10° 175,981 | 4693.44
36.84 < 104 163,297 | 5004.24
39.39 < 103 160,516 | 5347.71
41.08 < 102 160,138 | 5577.22
43.88 < 10! 160,011 | 5941.72
45.94 < 109 160,002 | 6218.82
46.19 <101 160,001 | 6252.20
46.25 <1072 160,000 | 6260.20
46.89 <1073 160,000 | 6344.31
46.91 <1074 160,000 | 6346.99
46.93 <1075 160,000 | 6349.69




Tool 5

Parallelism

- “Work on random subsets”

. A
bl




The Problem

In F
)

Size of x is BIG

smooth



Parallel Randomized
Coordinate Descent

\\ P.R. and Martin Takac
Parallel Coordinate Descent Methods for Big Data Optimization

Adobe  Mathematical Programming 156(1), 433-484, 2016

16t IMA Leslie Fox Prize (2M9), 2013



Additive Strategy
r=(z',2%) e R?, F(z' 2?) = (2! + 2% —1)*
1b 3

F(1,1) =1

1a

F<o,0>1|\0 \



Additive Strategy
r=(z',2%) e R?, F(z' 2?) = (2! + 2% —1)*
1b \ 1
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Additive Strategy

r=(z',2%) e R?, F(z' 2?) = (2! + 2% —1)*

F(1,1) =1

2a



Add Itive Strategy

T = (561,2132) c R?, F(x1’$2) _ (xl e 1)2
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r = (v, x?

Additive Strategy
) eR?, F(x!',z°) = (2! + 2% — 1)°

~

P2 \I LL BE BACK!




Averaging Strategy
1<§1»fv2> €R?, F(z!,2?) = (z' + 2% — 1)

SN

X

/

/////

0



Averaging Can Be Bad, Too!

r=(xt,2?) e R?, F(z',2%) = (2! —1)? + (2 — 1)*




Actually, Averaging Can Be Very Bad!

Plo) = (@' = 12+ (@ = 1) 4o+ (2" = 1)?




How to Combine the Updates?

* We should do data- Averaging Adding
. . (no speedup) (perfect speedup)
dependent combination
. M

of the results obtained

in para”el Dense data Sparse data
* There is rich theory for

this now

Zheng Qu and P.R.
!! Coordinate Descent with Arbitrary Sampling Il: Expected Separable

X Overapproximation
Adobe  Optimization Methods and Software 31(5), 858-884, 2016




error

Performance

GD

RCD 1 core

Better speedup
for sparser data!

# gradient evaluations



Problem with 1 Billion Variables

F(xx) — F* Elapsed Time
(k-7)/n 1 core 8 cores 16 cores 1 core | 8 cores | 16 cores
0 6.27e+22 | 6.27e+22 | 6.27e+22 0.00 0.00 0.00
1 2.24e+22 | 2.24e+22 | 2.24e+22 0.89 0.11 0.06
2 2.25e+22 | 3.64e+19 | 2.24e+22 1.97 0.27 0.14
3 1.15e+20 | 1.94e+19 | 1.37e+20 3.20 0.43 0.21
4 5.25e+19 | 1.42e+18 | 8.19e+19 4.28 0.58 0.29
5 1.59e+19 | 1.05e+17 | 3.37e+19 5.37 0.73 0.37
6 1.97e+18 | 1.17e+16 | 1.33e+19 6.64 0.89 0.45
7 2.40e+16 | 3.18e+15 | 8.39e+17 7.87 1.04 0.53
26 3.49e+02 | 4.11e+01 | 3.68e+03 31.71 3.99 2.02
27 1.92e+02 | 5.70e+00 | 7.77e+402 33.00 4.14 2.10
28 1.07e+02 | 2.14e+00 | 6.69e+02 34.23 4.30 2.17
29 6.18e+00 | 2.35e-01 | 3.64e+01 35.31 4.45 2.25
30 4.31e+00 | 4.03e-02 | 2.74e+00 36.60 4.60 2.33
31 6.17e-01 3.50e-02 6.20e-01 37.90 4.75 2.41
32 1.83e-02 2.41e-03 2.34e-01 39.17 4.91 2.48
33 3.80e-03 1.63e-03 1.57e-02 40.39 5.06 2.56
34 7.28e-14 7.46e-14 1.20e-02 41.47 5.21 2.64
35 - - 1.23e-03 - - 2.72
36 - - 3.99¢-04 - - 2.80
37 - - 7.46e-14 - - 2.87



Tool 6

Distributed Computation

- “Communication hurts”




Distribution of Data




Distributed sampling




Distributed sampling

Each computer (node) independently pick 7 variables
from those it owns, uniformly at random

-

.

S = {3,7,10} U {11,15,18} U {25,27,29} U - -

Random set of

_ Also see: CoCoA+ [Ma, Smith, Jaggi et al 15]
variables



There is Theory for this...

Key: Get the right stepsize parameters v

The leading term in the complexity bound then is:

max | — +
2 pi  DiAYM

n  Something that looks complicated
cr AYCT

d (T=1)(w;—1) TC T—1 @il N AT 4.
n Amax (Zj:1 (1 + max{n/c—1,1} + (W B max{n/c—l,l}) w’, w]) AjiAﬂ)

J

— +max
cT i AyeT



Experiment

Machine: 128 nodes of Hector Supercomputer (4096 cores)

Problem: LASSO, n =1 billion, d = 0.5 billion, 3 TB

T,

HYDRA

2014 OR Society Doctoral Prize

P.R. and Martin Takac
Distributed Coordinate Descent for Learning with Big Data

Adobe Journal of Machine Learning Research 17:1-25, 2016




LASSO: 3TB data + 128 nodes

+ASL-FP
«~RA-FP

1000 1500 2000
Elapsed Time [s]



Experiment

Machine: 128 nodes of Archer Supercomputer

Problem: LASSO, n =5 million, d = 50 billion, 5 TB
(60,000 nnz per row of A)

oy

..

HYDRA?

Coordinate Descent for Minimizing Non-strongly Convex Losses

i Olivier Fercoq, Zheng Qu, P.R. and Martin Takac. Fast Distributed
Adbe  IEEE Int. Workshop on Machine Learning for Signal Processing, 2014




LASSO: 5TB data (d = 50 billion)
128 nodes

0.2

10

=-hydra® = hydra’

10 10° 10° 10° 10°
lterations Elapsed time [sec.]



Used in YouTube

N(i[1| Tube coldplay Q Upload m

Mix - Playlist Coldplay - Top 21
Coldplay Songs

.\ﬂ

- COLDPLAY - BESTOF THE BEST
' 8 y§
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(2hours,10minutes)

Best Of Bob Marley

/’

z _
CCLDPLATS

Best Of Lana Del Rey (+ Remixes)-
7 Audio + Video Megamix (2012)

Lana Del Rey - Born To Die The
Paradise Edition (BONUS "BURNING

Playlist Coldplay - Top 21 Coldplay Songs m U2 - The Best of 1980-1990 (Full




Tool 7

Importance Sampling

“Sample more important data
- _more often” i




SYNC

P.R. and Martin Takac
On Optimal Probabilities in Stochastic Coordinate Descent Methods
Aobe  Optimization Letters 10(6), 1233-1243, 2015

2014 OR Society Doctoral Prize




The Problem

In F
)

Smooth and strongly convex

Really, really large



S YN C Arbitrary Sampling:

Sk C{1,2,...,n}

Choose a random set S; of coordinates

For 2 € Sk do
. . 1
Ty < 2, — — ViF(ar)
U3
For 2 ¢ Si. do
éé Partial derivative
) )
xk—l—l <— L.

Stepsize parameter



Complexity Theorem

2 (mx 1) g (FR0) = F))

v Pild €p

D; = ]P)(’L c Sk) strong convexity

$

constant of F

P(F(zx) — F(z.) <€) > 1—p



Uniform vs Optimal Sampling

1 U; N 1mMax; v;

max =

Pi= i Pifk i

n

Vi Qi

U; ;
Pi = max
D i Vi » i Pt 19




Uniform vs Optimal Sampling

10
Q 40 .
gm i uniform
E probabilities
©
'©
£
F107"

optimal probabilities
107°

0 50 100
nb of epochs

Data = covl, n =2522,911, pu=10""°






Conclusion

* Data, data science, machine learning, ATl

* Data science applications
— structure of the objective (simple, data-defined)
— imaging, empirical risk minimization, truss
topology design, spam filtering, ...

e Outlined a few key tools/tricks developed for
big data optimization
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