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1. The Problem & Motivation



The Problem: Empirical Risk Minimization




Motivation 1: Remove Strong
Assumptions on Stochastic Gradients

We get rid of unreasonable assumptions on the (such assumptions may not hold even

2"d moment / variance of stochastic gradients:

Bllg* - Vf(z*)|* < 0?

Ellg"||? < o2

Lan, Nemirovski, Juditsky, Shapiro 2009

We do not need any assumptions!

Instead, we use expected smoothness assumption
which follows from convexity and smoothness

for unconstrained minimization of
strongly convex functions

Nguyen et al (ICML 2018)

Nguyen et al (arXiv:1811.12403)

Gower, Richtarik and Bach (arXiv:1706.01108)




Motivation 2: Develop SGD with Flexible
Sampling Strategies

First analysis for SGD in the arbitrary sampling paradigm
(extends, simplifies and improves upon previous results)

Moulines & Bach (NIPS 2011) Needell, Srebro and Ward (MAPR 2016) Needell & Ward (2017)

Byproduct:
* First SGD analysis that recovers rate of GD in a special case
e First formula for optimal minibatch size for SGD
 Importance sampling for minibatch SGD



2. Stochastic Reformulatio"n
| _of Finite-Sum Problems



Stochastic Reformulation

Sampling vector
v = (V1,...,Up)

ffv(x)

Random variable Linearity of
with mean 1 expectation
n n i n ]
def 1 1 i 1
T) = — Jilx) = — i) fi(x) = — v; fi(x
nEﬁ() nEﬁ[]() n§ (
7/:1 ’],:1 u ’I,Zl _
Original Finite-Sum Problem Stochastic Reformulation
min K
» rEeR4 fv( )

min — g fi(x
x€RI N

Minimizing the expectation over random

linear combinations of the original functions



SGD Applied to Stochastic Reformulation

n

. - def 1
111111 i: U €ZT — ’L 'l
min £ | £, (z) n;vf(w)

stepsize l

P gk AL (R J

sample 0" ~ D

By varying D, we obtain different existing and new variants of SGD

We perform a general analysis for any distribution D



Stochastic Reformulations of
Deterministic Problems: Related Work

Linear systems / convex quadratic minimization "L | Richtarik and Takac (arXiv:1706.01108)
Stochastic reformulations of linear systems: algorithms

and convergence theory

Convex feasibility J~ | Necoara, Patrascu and Richtérik (arXiv:1801.04873)
Randomized projection methods for convex feasibility
problems: conditioning and convergence rates

Variance reduction for finite-sum problems “. | Gower, Richtarik and Bach (arXiv:1706.01108)
Stochastic quasi-gradient methods: variance reduction

via Jacobian sketching




min f(z) = %Zfz(x)

Sampling Without Replacement

1

= 7€ S5
» vi =492
def

Random set 7 = E[S] Sampling vector
P = Prob(z ) Ev;] =1

SC{1,2,...,n}

Minibatch SGD Without Replacement

el = gk — ARV (2 J « Vf,v —

First time SGD is proposed and analyzed
in the arbitrary sampling paradigm E[Vf,(z)] = Vi(z)

Richtarik and Takac (arXiv:1310.3438; Opt Letters 2016)




Example: Single Element Sampling

S| = 1 with probability 1

({1} with probability p;
{2} with probability ps

_{n} with probability p,

SGD




min

Sampling With Replacement e

1 T
UZ — 1 St:’l:
» - ; (=)

Sampling vector {1 event A holds
1=

(1 with probability ¢
2 with probability g9

zn:% =1
. with probability g,

0 otherwise

Sample several copies independently: S1,592 ..., 5+

\ 4

Minibatch SGD With Replacement

£El~c—|—1 _ Zlik . ’kaka (xk)

) t=1

See also Algorithm 3 in Gorbunov et al (arXiv:1905.11261) E[Vf,(x)] =Vf(x)




3. Expected Smoothness



We will write: (f,D) ~ ES(L)

Can hold as an identity for quadratics:

1 n . . . — — .
Vfi(z) =~ S0 Vi) Minimizer of f Richtarik and Taka& (1706.01108); Equation (30)

s=1

21V fu(@) = Vo (@] < 2L (f(2) = f (=)

Lemma f convex & L-smooth Expected smoothness constant
1

See also: Gower, Bach & Richtarik (1805.02632); Section 3

Depends on fand v

(f7 D) ~ ES(E) L =1L"Anax (EUUT) A poor but simple bound

(we’ll give much better bounds later)



Gradient noise:

o? LR [|Vf, ()]
Lemima (£, D) ~ BS(L)

LIV E@)]P] < 4L (f(2) = £ (@) + 207

» Generalization to proximal case Z fil
=0 Weak growth condition (and variance reduction): ZeRe 7 ‘

Gorbunov et al (arXiv:1905.11261); Assumption 4.1

Richtarik and Taka¢ (1706.01108); Equation (30)

Nguyen et al (ICML 2018) IV £, (2)|> IV fo(z) = VF(z*)|

Vaswani, Bach and Schmidt (AISTATS 2019) f(z) — f(z*) F(@) — fla*) — (Vi) z — z*)




Computation of Expected Smoothness

Sampling (with Replacement)

Expected Smoothness

Expected Gradient Noise

f is L—smooth

.= ;pgj o S fi is Li~smooth  Pji; = Prob(i,j € 5)
General N
1 1 — pic) L o 1 P
Random subset S C {1,2,...,n} £ =cL+ = max (1 — pic) L; g2 — — — (hi, hy;)
n i D; i1 PiPj
Single Element S bt "
. . oqe 1 Lz — Prob(i € S 2 1 1 2
S = {i} with probability p; [ — — max — p; = Prob(i € 5) 0" =— Z — || hs)|
no o+ p; n 1 Di
Independent Minibatch Pij=pipj = c=1
mn n — .
{3} with probability p; 1 1 —p;)L; 2 1 I—p 2
S = U S’L Si:{(?) with Erobabilit; Ilj—pi L=1L + — max ( pz) : o = ) . : HhZH
. n Di n i—1 P
=1 Si,...,5, are independent _ def
f is L—smooth T=E[S=>,p
Uniform Minibatch ( ) 1 s ,
. n(T — n — —

S chosen uniformly random L= ’ L+ ’ max L; 0® = o 1 Z [l
from all subsets of size T T(n—1) T(n—1) = i=1




4. Convergence Analysis:
Linear Rate



Ma i 1 Resu It (Linear Convergence to a Neighborhood of the Solution)

Assumption: [ is p—quasi strongly convex Gradient noise:
£ @) 2 @)+ (V)0 — ) + & ot —a? o? EE |||V S, ()]

Theorem (f,D)~ ES(L) »

2
) 2 2 2vo
||z — 2| < (1= )" ||2° - :
9!
Fixed stepsize:  7* =7 < 57 ‘ oc=0 » can choose 7 =

Corollary ~-unf{,. %}
. 12
2L 4o 2 ||2° — z*||” E 2" —a*||" <e
k>max{ : 2}log -

TR



Optimal Minibatch Size |H#itertins

# stochastic gradient
evaluations in 1 iteration

T = E|S]

—_———

: X T

Computation of the Constants

ing (with | ) ‘ i Smoothness Expected Gradient Noise

¢=Pu ., fisLsmooth fiis Li-smooth | Py =Prob(i,j€8) hi=Vfilz")
ips

UV apoL s =y Py
Lol L 2 ;:] oy (s

eeeeeee

g 2 15~
L= L B A n=PObGES) | 2= 3" )
e n: = i

1 -1-p, p
2 i 2
— NPy,

o= ;:‘ Pz et

Optimal minibatches for
different methods:

Qu et al (ICML 2016) [ —

Bibi et al (arXiv:1806.05633)




Optimal Minibatch Size

w'\

2 2072

min C(7) L max n(r—1)L+(n—r7 maXLz, (n—7 7
1<7<n pu(n —1) 1

C(7) increasing linear decreasing linear

n(0 + L — Lyax)

" 04+ nL — Lo




Optimal Minibatch Size: LIBSVM data

n=14912 d =300, A\ =100/n, e=10"% 7 =n/5

O-. . ¢
10 | —&— singletons
— 10_1_: ; —%— 7-ind
S ; \ —#— 2633 = 7" - ind
§ A 10-2. \ —4— 7-nice
o = s —k— 2633 = 7* - nice
S < 3. \
o wl 10~
B =
2 3 y
3 g 10
107°
0 200 400 600 300 1000

Epoch number



Logistic regression

data: Gaussian

Optimal Minibatch Size: Synthetic Data

n=200,d=10 A\=20/n, e=10"% 7 =n/10

10 —&— singletons
—%— 7-ind
10-1 —4— 192 = 7" - ind
—4— T-nice
—— 193 = 7" - nice
1072

0 100 200 300 400 500
Epoch number



Importance Sampling for Minibatches

Details in: Paper

Richtarik and Takac (Opt Let 2016)

Csiba and Richtarik (JMLR 2018)

Gower, Richtarik and Bach (arXiv:1805.02632)

Hanzely and Richtarik (AISTATS 2019)




5. Convergence Analysis:i
Sublinear Rate



Learning Schedule: Constant & Decreasing

Assumption: f is p—quasi strongly convex

Theorem (f7 D) ~ ES(,C) f(a:*)zf(x)+<Vf(x),x*_x>+§Hx*_x||2
Wk{% for k<4[L/u
- 2k—+1 Iy r |
Gz for k>4 L/

Gradient noise:

o? B ||V, ()] ‘

> 802 16 [L/u]’
< |
~ u2k o2 k2

2

ok — ¥

H:EO . .CC*

'4J

AL
for k> ”



Learning Schedule: Constant & Decreasing

Synthetic data Real data
o n = 1000, d = 400 n=4177,d =8
c = 10 _ 10 .
o~ synthetic —@— Constant step size Abalone —@— Constant step size
g o 107! —’— Decreasing step size 10-1 (LibSVM) —‘- Decreasing step size
=
8 | , —— Regime switch —— Regime switch
8 5107 5
oo o S
5/ = - 10—2
8 — | - 10_3 -
@ =[AT
oo —~ S _4 10~3
x =
h 0 25 50 75 100 125 150 175 200 0 10 20 30 40 50
Epoch number Epoch number
= n = 2000,d = 100 n = 1605,d = 119
c . 1007 _ 10" .
o synthetic —@— Constant step size ala —@— Constant step size
.ﬁ = ~0)— Decreasing step size (LibSVM) ~@— Decreasing step size
RS . . -1 . .
8 < 10-! —— Regime switch 10 —— Regime switch
o T S 5
Q T 4o
S % 10
2 102 i iiindow
h 3 W ,: :::: : :: o Regularizer
& e parameter:
- = i 0 25 50 75 100 125 150 175 200 0 25 50 1) 100 125 150 175 200
- Epoch number Epoch number )\ — l

n



6. Summary of Contributions



Summary of Contributions

1. New conceptual tool: stochastic reformulation of finite-sum problems
2. First SGD analysis in the arbitrary sampling paradigm

3. Linear rate for smooth quasi-strongly functions to a neighborhood of the
solution without the need for any noise assumptions!

4. First SGD analysis which recovers the rate for GD as a special case

5. First formulas for optimal minibatch size for SGD

6. First importance sampling for minibatches for SGD

7. A powerful learning schedule switching strategy with a sublinear rate

8. Tight extensions of previous results (Richarik-Takac¢ 2017, Viswani-Bach-

Schmidt 2018)
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The Problem
2 = argmin | /(@) ¥ 13" (@) o)
zeR? ni=
We assume f; are differentiable and f is quasi strongly convex.

Stochastic Reformulation

Stochastic reformulation of (1) is the problem:

. 1
i Euop [ 0) 4 S (0)] ®
where v = (vi,...,v,) € R" (“sampling vector”) is any random
vector for which
Ewplv =1, Vie{l,2,...,n}. (3)

© Equivalence: (2) is equivalent to (1) since E,np [fy] = f. Also
note that Eyp [V f,] = V£, which can be seen via
9y
Evp [V £ (2) LS Ewp[w] Vi = V£ ()
i=1
® We propose to solve (1) by applying SGD to (2):
o = 2F — V[P )

where v* ~ D is sampled i.i.d. and v* > 0 is a stepsize.

Example: Arbitrary Sampling

A sampling is a random set-valued mapping S with values being
subsets of {1,...,n}. A sampling is defined by assigning
probabilities to all 2" subsets of {1,...,n}.

© A sampling is proper if p; &p [ieS]>0forallie{l,...,n}.
© Each proper sampling S gives rise to a sampling vector v:
v =Diag(p; - --,8,") i
€S

where ¢; is the ith standard unit basis vector in R™. It is easy to
see that E [v;] = 1. Indeed, just notice that v; = p;* if i € S and
v=0ifi¢s.

Main Contributions

© We introduce and study a flexible stochastic reformulation (see
(2)) of the finite-sum problem (1), and study SGD applied to this
reformulation (see (5)). This way we obtain a wide array of
existing and many new variants of SGD for (1).

© We establish linear convergence of SGD applied to the stochastic
reformulation. As a by-product, we establish linear convergence
of SGD under the arbitrary sampling paradigm [2].

© Our results require very weak assumptions. In particular, we do
not assume bounded second moment of the gradients for every =
(only at z*; see (8)). We rely on the expected smoothness
assumption (7) [3, 4].

© Optimal mini-batch size: We establish formulas for the optimal
dependence of the stepsize on the mini-batch size.

© Learning schedule: We provide a formula for when SGD should
switch from a constant stepsize to a decreasing stepsize (see (9)).

o Interpolated models. We extend the findings in [5]; and show
that optimal mini-batch size is 1 for independent sampling and
sampling with replacement.

Assumptions

* Quasi strong convexity: f is quasi p-strongly convex [1]:
f@) 2 f(z) +(Vf(@),z" —2) + %\II* ~alf, vz (6)
* Expected Smoothness: There exists £ > 0 such
Eoo [[V£(e) = V)] < 2£(f() - (&), V2. ()
As L depends on both f and D, we will write (f, D) ~ ES(L).
» Finite Gradient Noise

o* € Eup [|IVAE < oo ®

Assumptions (7) and (8) include also some non-convex functions!

Linear Convergence with Fixed Step Size

Assumptions (7) and (8) lead to a bound on the 2nd moment of the
stochastic gradient:

Lemma: 2nd moment

If (f,D) ~ ES(L) and 0 < 400 (i.e., if (7) and (8) hold), then
Evp [ VA@)] < 4L(f(@) - f(a*) +20°

The above lemma can now be used to establish a linear convergence
result:

Choose 7* = € (0, 5], then SGD (5) satisfies:
2
Ellot — o[} < (1= - o7+ 2L

In particular, with stepsize y = min {i, ﬁ%}, we have

2 0 _ p¥||2
k> max{%, %}log <M> = EllzF —z*|*<e.
woep €

Proof. Let 78 & 2% — 2* and g* ¥ B, [||vak(zk)”2} .
5
e @ o 2t 7w e
= IrFIP = 29", Vfsl@) + IV fiul@®)?
Taking expectation conditioned on z* we obtain:

4
Egllrt 112 @ k12 - 290k, 9 (a4 + 7

(? A= llrHIF = 21f (@) — f(2*)] + "
Taking expectations again and using the lemma :
E[lr*? < (1 = ywEllr¥|® + 29%0
+2(29L - DE [f(z") - f(2")]
< (L= ywEllr¥? + 2%,
since 2yL < 1 and v < ﬁ Recursively applying the above and
summing up the resulting geometric series gives

B-1
E[rf|” < (1 =y [r°? +230 (1 = vy’ 70?
=0

2y0?
< @I+ =

Example: Mini-batch SGD Without
Replacement (7-nice sampling)

o Consider sampling S which picks from all subsets of {1,...,n} of
cardinality 7, uniformly at random. Then p; = 7 for all 4 and the
sampling vector v is given by:

L[z ies
‘ 0 otherwise.
© SGD (5) then takes the form

o = gk ,Ykg Z vﬁ(zk)

iesk

o If each f; is Li—smooth and convex, Lmax défmax, L;, and fis
L-smooth, then (f, D) ~ ES(L), where

LSE(T)d:d"(Til) n—r1

P e e

olet h* & L5 IV £i(z*)||%. Then the gradient noise is

h* n—
o =a¥(r) cer LI el

T n—1
© Applying Theorem 1,

> 2Azn—1) . {n(T - l)£+ Lﬂ’ %} Jog (2”130 sz2> ’
T(n—1) €

n—71 pp el
implies E|z* — z*||* < e.
© Theoretically optimal mini-batch size is obtained by minimizing
the above bound on & in 7:
L—Lnpuc+2-h*
=
nL — Lo+ 2 h*

A sample computation is shown in the plot below:

12100

Lox10°

ox101

complexity

a0x10

204100

E
mini-batch size

Sublinear Convergence with Constant and
Later Decreasing Step Size

In the next theorem we propose a stepsize switching strategy: first
use a constant stepsize, and at some point switch to O(1/k) stepsize.
This leads to O(1/k) rate.

Let K % £/ and
R for k < 4[K]
k 2L
Y= "%k 1 O
(G for k> 4[K].
If k > 4[K], then SGD iterates given by (5) satisfy:
2 2
ka2 008 C16[KT2 o Lo
— <22 —
Elet - o'l < G+ gl <. (0)

Learning Schedule

n=4177,d=8

—@— Constant step size
@~ Decreasing step size
—— Regime switch

G107
o " iR
e
0 10 ) 0 @0 0
Epoch number
n = 1605,d = 119
10°)
—@— Constant step size
~@— Decreasing step size
0 —— Regime switch
8
&

50 7% 100 15 150 175 200
Epoch number

Constant vs decreasing step size regimes of SGD with A = 1/n.
Top: Ridge regression problem with abalone. Bottom: Logistic
regression with ala. Data from LIBSVM.

PCA (Sum-of-non-convex functions)

= 1000,d = 100

—@— Constant step size
~@— Decreasing step size

4
S
10
@ £ 0 @ £ 100
Epoch number
n=1000,d=10,7 =n/5
10°
—@— Singletons —§— 7-nice
107
B

0 %0 40

@ 80 1000 100 100
Epoch number

Top: Comparison between constant and decreasing step size regimes
of SGD for PCA. Bottom: Comparison of different sampling strate-
gies of SGD for PCA.
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Extra Material: ,
Brief History of Arbitrary Sampling



| Paper | Algorithm

N o o AW NN
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SGD: general analysis and improved rates
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SAGA with arbitrary sampling

NSync

QUARTZ

Dual-free SDCA

ALPHA

SPDHGM

SEGA

ACD

SARAH, SVRG,
SAGA

SGD-AS

SAGA-AS

Arbitrary sampling (AS) first introduced
Analysis of coordinate descent under strong convexity

First AS SGD method for min P
Primal-dual stochastic fixed point method; variance reduced

First primal-only AS SGD method for min P
Variance-reduced

First accelerated coordinate descent method with AS
Analysis for smooth convex functions

2

First dedicated study of ESO inequalities Es
needed for analysis of AS methods

Z Ah;

i€S

< pivs Ikl
=1l
Chambolle-Pock method with AS

Variance-reduce coordinate descent with AS

First accelerated coordinate descent method with AS
Analysis for smooth strongly convex functions
Importance sampling for minibatches

First non-convex analysis of an AS method
First optimal mini-batch sampling

First AS variant of SGD (without variance reduction)
Optimal minibatch size

First AS variant of SAGA



