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Problem Formulation

Network of n nodes (machines/agents) cooperates to solve the stochastic
consensus optimization problem:

min
x∈Rd

f (x) =
1

n

n∑
i=1

Eξ∼Di
Fi (x ; ξ)︸ ︷︷ ︸

fi (x)

Distributed Setting

f is described by too much data to be stored on a singe computer

a single computer is not powerful enough for the task at hand and
we have access to multiple computers.

Node i ∈ [n] has local data following a distribution Di .

Nodes can locally evaluate stochastic gradients ∇Fi (x ; ξi ), ξi ∼ Di

Communication is required to access information from other nodes.

GOAL: Each node evaluates the vector x that minimize f (x).
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On Parallel Stochastic Gradient Descent

Workhorse Algorithm: Stochastic Gradient Descent

xk+1 = xk − γk
(

1

n

n∑
i

∇Fi (x ; ξi )

)

Leverage parallel computing
resources to speed up training.

Central node aggregates the
gradient computed from the
other nodes.

Communication Bottleneck
Communication traffic jam on the

central node.
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Solution: Decentralized Multi-Agent Optimization

Figure:

xk+1
i = xki − γk

(
1
Nk

i

∑
j∈Nk

i
∇Fj(x

k
j ; ξi )

)

On decentralized methods

First developed by control
theory/signal processing
communities.

Topology of network is known
(application oriented).

Goal: Design algorithm that
converges for this topology.

Difference in Deep learning:
For training DNNs select the network

the benefits the training!
Goal: Faster convergence!

Validation accuracy!
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On Decentralized Methods

The decentralized optimization methods for machine learning and deep
learning tasks based on average consensus methods.

Average Consensus (AC) Problem

Let each node i ∈ [n] to“know” a private value ci ∈ R.
Goal: All nodes compute c̄ := 1

n

∑
i ci , in a distributed fashion.

Decentralized Protocols:
1 D-PSGD (PushPull parameter aggregation, neighboring nodes)

AC: [Xiao et al 2005] → SC: [Nedic, Ozdaglar 2009]
→ DNNs: Lian et al. Neurips 2017. (symmetric communication)

2 AD-PSGD (PushPull parameter aggregation, pair of nodes)
AC: [Boyd et al 2006] [Loizou et al. 2019]→ SC: [Nedic et al. 2010]
→ DNNs: Lian et al. ICML 2018. (symmetric communication)

3 Push-Sum (directed, time varying graphs)
AC: [Kempe et al. 2003] → SC: [Nedic, Olshevsky 2016]
→ DNNs: This Work
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Push-Sum Protocol [Kempe et al. FOCS 2003]

Let x0i ∈ Rd be a vector at node i . Goal:Evaluate 1
n

∑n
i x

0
i

Figure: Directed graph.

Column stochastic matrix P:
Pi ,j > 0⇔ (j → i) ∈ E∑

j Pi ,j = 1

Push-Sum Protocol:

1 Initialize x0i ∈ Rd and ω0
i = 1.

2 Let X0 ∈ Rn×d and ω ∈ Rn

3 Iterate for k ≥ 0:

Xk = PXk−1 = PkX0

ωk = Pωk−1 = Pkω0

zki =
xk
i

ωk
i

→ ( 1
n

∑n
i x

0
i )

Thus the update at node i :
xk+1
i =

∑n
j=1 p

k
i ,jx

k
j =∑

j∈N in
i

(k) pki ,jx
k
j .
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Stochastic Gradient Push (SGP)

Initialize:
γ > 0, x (0)

i = z (0)
i ∈ Rd and w

(0)
i = 1 for all nodes i ∈ {1, 2, . . . , n}

For iterations k = 0, 1, 2, · · · ,K , at node i do:

1 Local Update: ( SGD/momentum/Adam)

Sample new mini-batch ξ
(k)
i ∼ Di , compute ∇Fi (z

(k)
i ; ξ

(k)
i )

Update mini-batch gradient : x (k+ 1
2 )

i = x (k)
i − γ∇Fi (z

(k)
i ; ξ

(k)
i )

2 Communication: (τ -overlap SGP)

Send
(
p
(k)
j,i x (k+ 1

2 )
i , p

(k)
j,i w

(k)
i

)
to out-neighbors j ∈ N out

i
(k)

Receive
(
p
(k)
i,j x (k+ 1

2 )
j , p

(k)
i,j w

(k)
j

)
from in-neighbors j ∈ N in

i
(k)

3 Aggregate: (Push-Sum Protocol)

x (k+1)
i =

∑
j∈N in

i
(k) p

(k)
i,j x (k+ 1

2 )
j

w
(k+1)
i =

∑
j∈N in

i
(k) p

(k)
i,j w

(k)
j

z (k+1)
i = x (k+1)

i /w
(k+1)
i
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Algorithm 1 Stochastic Gradient Push (SGP), [Nedić, Olshevsky 2016]

Require: Initialize γ > 0, x (0)
i = z (0)

i ∈ Rd and w
(0)
i = 1 for all nodes i ∈

{1, 2, . . . , n}
1: for k = 0, 1, 2, · · · ,K do

2: Sample new mini-batch ξ
(k)
i ∼ Di from local distribution

3: Compute a local stochastic mini-batch gradient at z (k)
i : ∇Fi (z

(k)
i ; ξ

(k)
i )

4: x (k+ 1
2 )

i = x (k)
i − γ∇Fi (z

(k)
i ; ξ

(k)
i )

5: Send
(
p
(k)
j,i x (k+ 1

2 )
i , p

(k)
j,i w

(k)
i

)
to out-neighbors j ∈ N out

i
(k)

;

receive
(
p
(k)
i,j x (k+ 1

2 )
j , p

(k)
i,j w

(k)
j

)
from in-neighbors j ∈ N in

i
(k)

6: x (k+1)
i =

∑
j∈N in

i
(k) p

(k)
i,j x (k+ 1

2 )
j

7: w
(k+1)
i =

∑
j∈N in

i
(k) p

(k)
i,j w

(k)
j

8: z (k+1)
i = x (k+1)

i /w
(k+1)
i

9: end for
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The Problem: Main Assumptions

min
x∈Rd

f (x) =
1

n

n∑
i=1

Eξ∼Di
Fi (x ; ξ)︸ ︷︷ ︸

fi (x)

Main Assumptions

L-smooth: ∃ L > 0: ‖∇fi (x)−∇fi (y)‖ ≤ L‖x − y‖.
Bounded variance: Eξ∼Di

‖∇Fi (x ; ξ)−∇fi (x)‖2 ≤ σ2 ∀i , ∀x
Similar objectives: 1

n

∑n
i=1 ‖∇fi (x)−∇f (x)‖2 ≤ ζ2 ∀x .

Mixing Connectivity: ∃ B,∆ > 0: graph with edge set
⋃(l+1)B−1

k=lB E (k)

is strongly connected and has diameter at most ∆ for every l ≥ 0.

Here E (k) = {(i , j) : p
(k)
i ,j > 0}.

Bounded Delays (Overlap-SGP): ∃ τ ∈ Z+, such that the delay,
satisfies k ′ − k ≤ τ
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Relation of SGP to other approaches

Parallel SGD (AllReduce gradient aggregation / all nodes)

Topology: fully-connected at every iteration

Uniform mixing weights: That is, p
(k)
j ,i = 1/n for all i , j = 1, . . . , n

In this case the push-sum weight wk
i = 1, ∀k, ∀i ∈ [n]

D-PSGD

Topology: Static, undirected, and connected at every iteration

Symmetric mixing weights: p
(k)
j ,i = p

(k)
i ,j for all (i , j) :

∑
j p

(k)
j ,i = 1;

In this case the push-sum weight wk
i = 1, ∀k, ∀i ∈ [n]

Directed time-varying graphs

Topology: Directed, potentially time-varying, and B-strongly connected

Nodes choose mixing weights p
(k)
j ,i independently of one another;

In this case, push-sum weight wk
i may differ between nodes at any given

iteration, and we obtain a new operating regime.
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Main Theoretical Contributions

Theorem (Convergence of x (k))

Suppose that main assumptions hold. Run SGP for K iterations with
step-size γ =

√
n/K. Let f ∗ = infx f (x) and assume that f ∗ > −∞.

There exist constants C and q ∈ [0, 1), which depend on ∆, P(k) and τ
such that when:

K≥max

{
nL4C4602

(1−q)4
,

L4C4P2
1n

(1−q)4(f (x(0))−f ∗+ Lσ2
2 )2

,
L2C2nP2

(1−q)2(f (x(0))−f ∗+ Lσ2
2 )

,n

}

then ∑K−1
k=0 E

∥∥∥∇f (x (k))
∥∥∥2

K
≤

12(f (x (0))− f ∗ + Lσ2

2 )
√
nK

.

where x (k) = 1
n

∑n
i=1 x (k)

i (average of the nodes’ parameters).

Remark: Centralized parallel SGD converges also with O(1/
√
nK ).
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Main Theoretical Contributions

Theorem (Convergence to stationary point)

Under the same assumptions,

1

nK

K−1∑
k=0

n∑
i=1

E
∥∥∥x (k) − z (k)

i

∥∥∥2 ≤ O

(
1

K
+

1

K 3/2

)
,

and

1

nK

K−1∑
k=0

n∑
i=1

E
∥∥∥∇f (zk

i )
∥∥∥2 ≤ O

(
1√
nK

+
1

K
+

1

K 3/2

)
.

As K grows:

Variables z (k)
i −→ x (k),

Convergence to a stationary point.

For fixed n and large K , the 1/
√
nK term will dominate the other

factors.
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Numerical Evaluation

Training ResNet50 on ImageNet Classification task

System: 8 GPUs/nodes. Look ar scaling from 4-32 nodes (32-256
GPUs)

Communication over 10 Gbps Ethernet (high latency scenario) and
100 Gbps Infiniband networks (no communication bottleneck)

Comparison with State-of-the-art:

(i) AllReduced-based SGD [Goyal et al. 2017]
(ii) D-PSGD, decentralized push-pull stochastic gradient descent [Lian et

al. NIPS 2017]
(iii) AD-PSGD , asynchronous decentralized push-pull stochastic gradient

descent [Lian et al. ICML 2018]

Code:
https:

//github.com/facebookresearch/stochastic_gradient_push
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Graph Topology: Directed Exponential Graph

1

2

3

0

4

6

5

7

Figure: 8-node directed exponential
graph, highlighting node 0’s
out-neighbours.

Cyclic strategy:
Each node sends and receives
one message per update.
Node i sends to:

i + 20mod n
i + 21mod n
. . .
i + 2log2(n−1)mod n

Mixing Matrices Pk

Node i choose its mixing
weights (column i of Pk)
Uniform mixing weights.
For one-peer-per-node case:
Each column of Pk has
exactly two non-zero entries,
both equal to 1/2.
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Scaling and Convergence
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(a) Iteration-wise convergence
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(b) Time-wise convergence

Figure: Comparison of AllReduce-SGD (AR-SGD), SGP and D-PSGD on 8–16
nodes interconnected via 10 Gbps Ethernet. All methods are run for 90 epochs.

Remarks:

Increasing ] nodes by 2 ⇒ ] iterations is decreasing by 2.

SGP completes 90 epochs in less time than other methods.
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Scaling and Convergence
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Figure: Comparison of AllReduce-SGD (AR-SGD), SGP and D-PSGD on 4–32
nodes interconnected via 10 Gbps Ethernet and 100Gbps-InfiniBand.

Remarks:

InfiniBand: all methods, constant time per iteration

Ethernet: SGP is the faster method (1.5x faster than D-PSGD)
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Scaling and Convergence

4 nodes (32 GPUs) 8 nodes (64 GPUs) 16 nodes (128 GPUs) 32 nodes (256 GPUs)

AR-SGD 76.2% 22.0 hrs. 76.4% 14.0 hrs. 76.3% 8.5 hrs. 76.2% 5.1 hrs.
D-PSGD 76.4% 19.7 hrs. 76.1% 9.7 hrs. 75.9% 5.0 hrs. 74.4% 2.6 hrs.

SGP 76.3% 11.8 hrs. 76.4% 5.9 hrs. 75.9% 3.2 hrs. 75.0% 1.7 hrs.

Table: Top-1 validation accuracy (%) and training time (hours), when
communicating over 10 Gbps Ethernet for AR-SGD, SGP and D-PSGD. SGP is
using 1-peer communication topology. All methods are run for 90 epochs.

SGP outperforms D-PSGD and AllReduce-SGD in terms of total
training time

Validation accuracy degrades for larger networks (16-32 nodes)
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Communication and the speed-accuracy tradeoff.

We explore the effect of communication topology on the speed-accuracy
tradeoff (16-31 nodes).

16 nodes (128 GPUs) 32 nodes (256 GPUs)

AR-SGD 76.3% 8.5 hrs. 76.2% 5.2 hrs.
2P-SGP 76.2% 5.1 hrs. 75.7% 2.5 hrs.
1P-SGP 75.9% 3.2 hrs. 75.0% 1.7 hrs.

AR/1P-SGP 76.2% 4.8 hrs. 75.4% 2.8 hrs.
2P/1P-SGP 76.0% 3.5 hrs. 75.1% 1.8 hrs.

Table: Top-1 validation accuracies (%) and training time (hours) for 1P-SGP
(1-peer topology); 2P-SGP (2-peer topology), AR-SGD (AllReduce SGD),
AR/1P-SGP (AllReduce first 30 epochs, 1-peer topology last 60 epochs), and
2P/1P-SGP (2-peer topology first 30 epochs, 1-peer topology last 60 epochs), all
communicating over 10 Gbps Ethernet.
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Overlap SGP (O-SGP)

Train Acc. Val. Acc. Train Time

AR-SGD 76.9% 76.3% 8.5 hrs.
D-PSGD 75.6% 75.9% 4.9 hrs.

AD-PSGD 74.7% 75.5% 2.9 hrs.
SGP 75.6% 75.9% 3.2 hrs.

1-OSGP 77.1% 75.7% 1.8 hrs.

Table: Comparing state-of-the-art synchronous and asynchronous gossip-based
approaches to 1-OSGP, an implementation of synchronous SGP where communication is
overlapped with 1 gradient step (all messages are always received with 1-iteration of
staleness). Experiments are run for 90 epochs over 16 nodes (128 GPUs) interconnected
via 10 Gbps Ethernet.

Overlapping communication and computation:
1)speeds up training and 2)no accuracy degradation.
synchronous 1-OSGP is faster than asynchronous AD-PSGD, and
achieves better training and validation accuracy.
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Fixed runtime budget.

We now compare the methods based on runtime budget and not epoch
budget.

Train Acc. Val. Acc. Train Time

AR-SGD 76.9% 76.2% 5.1 hrs. (90 epochs)
AD-PSGD 80.3% 76.9% 4.7 hrs. (270 epochs)

SGP 80.0% 77.1% 4.6 hrs. (270 epochs)
1-OSGP 81.8% 77.1% 2.7 hrs. (270 epochs)

Table: Comparing AllReduce SGD (AR-SGD) and SGP under a fix runtime budget.
Experiments are run over 1-peer graph topologies, using 32 nodes (256 GPUs)
interconnected via 10 Gbps Ethernet.

Given a similar runtime, SGP outperforms AR-SGD for both training
and validation accuracy.
Running 1-OSGP for the same number of epochs than SGP
outperforms SGD while improving the overal training efficiency.
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Conclusion

Conclusion

SGP and O-SGP for accelerating distributed training of DNNs.

Theoretical convergence guarantees in the smooth non-convex
setting, matching known convergence rates for parallel SGD.

Extensive Numerical Experiments.

Future Directions

Combining techniques for accelerating distributed training of DNNs:

Compressed messages (Alistarh et al.,2017; Wen et al.,2017; Jia et
al.,2018; Koloskova et al.,2019, Tang et al. 2019)

Truly asynchronous gossip-based variant (Jin et al.,2016 ; Lian et al.,
2018)

Extensions on analysis:
Provide analysis for the momentum variant, stage-wise learning rate,
remove strong assumptions.
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Thank You!
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