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Overview

© Introduction
@ Problem formulation
@ Motivation for Decentralized Topologies
@ Related Work: From Average Consensus to Optimization

© The Algorithm: Stochastic Gradient Push
@ PushSum Protocol for consensus and SGD
@ Theoretical guarantees: Non-convex functions

e Numerical Experiments
@ Training ResNet50 on ImageNet Classification task

@ Comparison with state-of-the-art

@ Conclusion & Future Directions of Research
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Problem Formulation

Network of n nodes (machines/agents) cooperates to solve the stochastic
consensus optimization problem:

min f Ee F
min, ) Z;ﬁ
= fi(x)

Distributed Setting
o f is described by too much data to be stored on a singe computer

@ a single computer is not powerful enough for the task at hand and
we have access to multiple computers.

v

Node i € [n] has local data following a distribution D;.

Nodes can locally evaluate stochastic gradients VF;(x;&;), & ~ D;

@ Communication is required to access information from other nodes.

GOAL: Each node evaluates the vector x that minimize f(x).



On Parallel Stochastic Gradient Descent

Workhorse Algorithm: Stochastic Gradient Descent

kL = gk ok <,17 Z VFi(x; ff))

Master-Worker @ Leverage parallel computing
resources to speed up training.

@ Central node aggregates the
gradient computed from the
other nodes.

Communication Bottleneck

Communication traffic jam on the

central node.
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Solution: Decentralized Multi-Agent Optimization

On decentralized methods

Multi-Agent e First developed by control
theory/signal processing
communities.

@ Topology of network is known
(application oriented).

@ Goal: Design algorithm that
converges for this topology.

Difference in Deep learning:
For training DNNs select the network
Figure the benefits the training!

Igure:
Goal: Faster convergence!
k+1 _ k k[ 1 ) (k- €. i .
A A (’V,-k 2jent VFi( ’5’)> Validation accuracy!
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On Decentralized Methods

The decentralized optimization methods for machine learning and deep
learning tasks based on average consensus methods.

Average Consensus (AC) Problem

Let each node i € [n] to"know" a private value ¢; € R.
Goal: All nodes compute ¢ := %Z, ¢, in a distributed fashion.

Decentralized Protocols:

@ D-PSGD (PushPull parameter aggregation, neighboring nodes)
AC: [Xiao et al 2005] — SC: [Nedic, Ozdaglar 2009]
— DNNSs: Lian et al. Neurips 2017. (symmetric communication)
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Push-Sum Protocol [Kempe et al. FOCS 2003]

Let x? € R? be a vector at node i. Goal:Evaluate %Zf’xlo

Push-Sum Protocol:
c O Initialize x? € RY and w? = 1.
f @ Let X ¢ R™9 and w € R"
O lterate for k > 0:
'\e o Xk = PXk~1 = pkXO
° o wk = Puwk—1 = Pk,
o 2 =2 = (157 x)
Figure: Directed graph.
Thus the update at node i:

. . xkt1 K ek —
Column stochastic matrix P: X; * Zjn 1 P:,J =
P;’j>0<:>(j—>l')€5 Zje./\/';”(kp’zJJ
2Pij=1
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Stochastic Gradient Push (SGP)

Initialize:
v >0, x,.(o) = z,.(o) € R? and WI-(O) =1 for all nodes i € {1,2,...,n}
For iterations k =0,1,2,--- , K, at node / do:

© Local Update: ( SGD/momentum/Adam)

e Sample new mini-batch fgk) ~ Dj, compute VF,-(z,-(k);ffk))

o Update mini-batch gradient : ( 2 _ x,-(k) — 7VF,-(zl.(k);f,(k))
@ Communication: (7-overlap SGP)

I

o Receive (p,(l;) (kﬂ),p,{j) J(k)

e Send (lef) -(k+2),PJ(I:) ,-( )) to out-neighbors j € ,/\/,.°“t(k)
) from in-neighbors j € /\/ii“(k)
© Aggregate: (Push-Sum Protocol)

k
D =5 Y (k+})

(k+1) (k) (k)
w; - Zje_/\/'" pl_j j
zi(k+1) _ Xi(k+1)/ i(k+1)
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Algorithm 1 Stochastic Gradient Push (SGP), [Nedi¢, Olshevsky 2016]

Require: Initialize v > 0, x(o) = zl-(o) € RY and W,-(O) = 1 for all nodes i €
{1,2,...,n}
1: for :0,1,2,-~-,Kdo

2: Sample new mini-batch f,(k) ~ D; from local distribution
3: Compute a local stochastic mini-batch gradient at z,-(k): VF,-(z,.(k);ka))
4 xi(k*%) _ (k) — YVFi(2! (k). f(k))
5 Send (lef) ,-(k+ )7pj(’f) ,-( )) to out-neighbors j € N°”t(k)-
receive (p,(’;) (k3 ),p,(J) (k)) from in-neighbors j GJ\/"“
6: (k+1) ZJGN.M P,(Ij) (k+3)
7. Wi(k+1) _ E_IEN'" p( )Wj(k)
8: zl_(k+1) _ i(k+1)/Wi(k+1)
9: end for
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The Problem: Main Assumptions

( E¢p; Fi
i )= .3 Ee-o i)
fi(x)

Main Assumptions

o L-smooth: 3 L > 0: |[Vfi(x) — VA(y)| < L||x —y].

o Bounded variance: E¢.p,||VFi(x; ) — V{(x)||? < 0? Vi, Vx

o Similar objectives: 1 3" | [|[Vfi(x) — VF(x)||> < ¢ V.

e Mixing Connectivity: 4 B, A > 0: graph with edge set Ui’:,lB)B_l E()
is strongly connected and has diameter at most A for every / > 0.

.. K

Here E() = {(i,}): p,(’j) > 0}.

e Bounded Delays (Overlap-SGP): 3 T € Z, such that the delay,
satisfies k' — k < T

v
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Relation of SGP to other approaches

Parallel SGD (AllReduce gradient aggregation / all nodes)
Topology: fully-connected at every iteration

Uniform mixing weights: That is, pj(f;) =1/nforalli,j=1,...,n
In this case the push-sum weight wX =1, Vk,Vi € [n]

D-PSGD

Topology: Static, undirected, and connected at every iteration

Symmetric mixing weights: pj(l;) = p,(j.) forall (i,j) : >_; p}l;) =1,

In this case the push-sum weight w* =1, Vk,Vi € [n]

Directed time-varying graphs
Topology: Directed, potentially time-varying, and B-strongly connected
Nodes choose mixing weights p}l;) independently of one another;

In this case, push-sum weight w* may differ between nodes at any given
iteration, and we obtain a new operating regime.

v,
N. Loizou: Stochastic Gradient Push 11 /23




Main Theoretical Contributions

Theorem (Convergence of x(¥))

Suppose that main assumptions hold. Run SGP for K iterations with
step-size v = /n/K. Let f* = infy f(x) and assume that f* > —oc.
There exist constants C and q € [0,1), which depend on A, P¥) and r
such that when:

4, 4002 4c*p?2, 12¢2pp,
K> nL™C760 , 1 , 2 ,
_max{ @-9" 7 (- qt(r(xO) -+ 17)2 " (1-q2(r(=) -+ 157) n}
then )
K—-1 < (k . 2
SIS E|VE o) - 4 152
K o v nK .

where x(K) = L5™~0 x,-(k) (average of the nodes’ parameters).

Remark: Centralized parallel SGD converges also with-O(1/v/ nK).
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Main Theoretical Contributions

Theorem (Convergence to stationary point)

Under the same assumptions,
K—1 n
1 2 1 1
= (k) _ ,(k>H <ol 4 -
K E[x® -0 <0+ 15m)
k=0 i=1
and 1
1 2 1 1 1
S Telrrf <o (g + i)
i ViE)| <0 nKJrK+K3V2
As K grows:

(k)

i

— Y(k)
@ Convergence to a stationary point.

@ For fixed n and large K, the 1/v/nK term will dominate the other
factors.
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Numerical Evaluation

Training ResNet50 on ImageNet Classification task
System: 8 GPUs/nodes. Look ar scaling from 4-32 nodes (32-256
GPUs)

o Communication over 10 Gbps Ethernet (high latency scenario) and
100 Gbps Infiniband networks (no communication bottleneck)

@ Comparison with State-of-the-art:

(i) AllReduced-based SGD [Goyal et al. 2017]

(i) D-PSGD, decentralized push-pull stochastic gradient descent [Lian et
al. NIPS 2017]

(iii) AD-PSGD , asynchronous decentralized push-pull stochastic gradient
descent [Lian et al. ICML 2018]

e Code:
https:
//github.com/facebookresearch/stochastic_gradient_push
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Graph Topology: Directed Exponential Graph

®
™) ®
() O,

Figure: 8-node directed exponential
graph, highlighting node 0's
out-neighbours.

o Cyclic strategy:
Each node sends and receives
one message per update.
Node i sends to:

i+ 2%mod n

i+ 2'mod n

i+ 2'°g2("~Umod n
e Mixing Matrices P

e Node i choose its mixing

weights (column i of P¥)

e Uniform mixing weights.

e For one-peer-per-node case:
Each column of P¥ has
exactly two non-zero entries,
both equal to 1/2.
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Scaling and Convergence

100 D-PSGD 8 nodes 100 D-PSGD 8 nodes
. SGP 8 nodes SGP 8 nodes
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Figure: Comparison of AllReduce-SGD (AR-SGD), SGP and D-PSGD on 8-16
nodes interconnected via 10 Gbps Ethernet. All methods are run for 90 epochs.

Remarks:

@ Increasing ff nodes by 2 = { iterations is decreasing by 2.
@ SGP completes 90 epochs in less time than other methods.

N. Loizou: Stochastic Gradient Push 16 / 23



Scaling and Convergence

—i— AR-SGD (Ethernet) / ->¢- SGP (InfiniBand)
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Figure: Comparison of AllReduce-SGD (AR-SGD), SGP and D-PSGD on 4-32
nodes interconnected via 10 Gbps Ethernet and 100Gbps-InfiniBand.

Remarks:
o InfiniBand: all methods, constant time per iteration
o Ethernet: SGP is the faster method (1.5x faster than D-PSGD)



Scaling and Conv

4 nodes (32 GPUs) 8 nodes (64 GPUs) 16 nodes (128 GPUs) 32 nodes (256 GPUs)

AR-SGD 76.2% 22.0 hrs. 76.4% 14.0 hrs. 76.3% 8.5 hrs. 76.2% 5.1 hrs.
D-PSGD 76.4% 19.7 hrs. 76.1% 9.7 hrs. 75.9% 5.0 hrs. 74.4% 2.6 hrs.
SGP 76.3% 11.8 hrs. 76.4% 5.9 hrs. 75.9% 3.2 hrs. 75.0% 1.7 hrs.

Table: Top-1 validation accuracy (%) and training time (hours), when
communicating over 10 Gbps Ethernet for AR-SGD, SGP and D-PSGD. SGP is
using 1-peer communication topology. All methods are run for 90 epochs.

@ SGP outperforms D-PSGD and AllReduce-SGD in terms of total
training time
o Validation accuracy degrades for larger networks (16-32 nodes)
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Communication and the speed-accuracy tradeoff.

We explore the effect of communication topology on the speed-accuracy
tradeoff (16-31 nodes).

16 nodes (128 GPUs) 32 nodes (256 GPUs)

AR-SGD 76.3% 8.5 hrs. 76.2% 5.2 hrs.
2P-SGP 76.2% 5.1 hrs. 75.7% 2.5 hrs.
1P-SGP 75.9% 3.2 hrs. 75.0% 1.7 hrs.
AR/1P-SGP 76.2% 4.8 hrs. 75.4% 2.8 hrs,
2P/1P-SGP 76.0% 3.5 hrs. 75.1% 1.8 hrs.

Table: Top-1 validation accuracies (%) and training time (hours) for 1P-SGP
(1-peer topology); 2P-SGP (2-peer topology), AR-SGD (AllReduce SGD),
AR/1P-SGP (AllReduce first 30 epochs, 1-peer topology last 60 epochs), and

2P /1P-SGP (2-peer topology first 30 epochs, 1-peer topology last 60 epochs), all
communicating over 10 Gbps Ethernet.
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Overlap SGP (O-SGP)

Train Acc. Val. Acc. Train Time

AR-SGD 76.9% 76.3% 8.5 hrs.
D-PSGD 75.6% 75.9% 4.9 hrs.
AD-PSGD 747% 75.5% 2.9 hrs.
SGP 75.6% 75.9% 3.2 hrs.
1-0OSGP 771% 75.7% 1.8 hrs.

Table: Comparing state-of-the-art synchronous and asynchronous gossip-based
approaches to 1-OSGP, an implementation of synchronous SGP where communication is
overlapped with 1 gradient step (all messages are always received with 1-iteration of
staleness). Experiments are run for 90 epochs over 16 nodes (128 GPUs) interconnected

via 10 Gbps Ethernet.

@ Overlapping communication and computation:
1)speeds up training and 2)no accuracy degradation.

@ synchronous 1-OSGP is faster than asynchronous AD-PSGD, and
achieves better training and validation accuracy.
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Fixed runtime budget.

We now compare the methods based on runtime budget and not epoch
budget.

Train Acc. Val. Acc. Train Time
AR-SGD 76.9% 76.2% 5.1 hrs. (90 epochs)
AD-PSGD 80.3% 76.9% 4.7 hrs. (270 epochs)
SGP 80.0% 77.1% 4.6 hrs. (270 epochs)
1-0OSGP 81.8% 77.1% 2.7 hrs. (270 epochs)

Table: Comparing AllReduce SGD (AR-SGD) and SGP under a fix runtime budget.
Experiments are run over 1-peer graph topologies, using 32 nodes (256 GPUs)
interconnected via 10 Gbps Ethernet.

@ Given a similar runtime, SGP outperforms AR-SGD for both training
and validation accuracy.

@ Running 1-OSGP for the same number of epochs than SGP
outperforms SGD while improving the overal training efficiency.
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Conclusion

Conclusion
@ SGP and O-SGP for accelerating distributed training of DNNs.

@ Theoretical convergence guarantees in the smooth non-convex
setting, matching known convergence rates for parallel SGD.

@ Extensive Numerical Experiments.

Future Directions
Combining techniques for accelerating distributed training of DNNs:

o Compressed messages (Alistarh et al.,2017; Wen et al.,2017; Jia et
al.,2018; Koloskova et al.,2019, Tang et al. 2019)

@ Truly asynchronous gossip-based variant (Jin et al.,2016 ; Lian et al.,
2018)

Extensions on analysis:
Provide analysis for the momentum variant, stage-wise learning rate,
remove strong assumptions.

v
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Thank You!
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