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Analysis of SVRG, SAGA and SARAH in the arbitrary sampling paradigm

Construction of optimal minibatch sampling

First optimal/importance sampling for
minibatches!



Data Sampling (i.e., Mini-batching)
Mechanisms

A sampling is uniquely defined by assigning
probabilities to all 2" subsets of {1, 2, ..., n}

Sampling: a random subset of {1, 2, ..., n}

Probability matrix P € R"*™ associated with sampling S Examples

PZ] — PrOb({Z,]} g S) Standard sampling:

S = {i} with probability % foralli=1,2,..., n

Probability vector p € R™ associated with sampling S

Standard mini-batch sampling:

i ) C — .. S = C with probability %
p/L PrOb({Z} o S) PZIL for all C' C {1,2,..., n} 8
such that |C| =b

Proper sampling: p; > 0 forall i=1,2,....,n

Arbitrary sampling paradigm = perform iteration complexity analysis for any proper sampling



From Standard Sampling to
Arbitrary Sampling

SVRG with Unbiased estimator of
Arbitrary Sampling the gradient
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Convergence Rate |
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KEY QUANTITY: DEPENDS
ON THE SAMPLING



C O nve rg e n ce Rate I I Constants satisfying:

P — ppT = Diag(pi1v1, pav2, . . ., Bk )
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Complexity Results

# Stochastic Gradient Evaluations to Achieve E[|Vf(z)]|?] < ¢
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Experiments
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The Problem
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Arbitrary Sampling

® Sampling: a random set-valued mapping S with
values being subsets of [n] == {1,2,...,n}. A
sampling is used to generate minibatches in
each iteration.

® Probability matrix associated with sampling S :
Py, % Prob({i,j} C S)

© Probability vector associated with sampling S :

p=(pn....p), piY Prob(i € S)
o Minibatch size: b = E[|S]] (expected size of S)
® Proper sampling: Sampling for which p; > 0 for
alli € [n]
® “Arbitr:

sampling” = any proper sampling

Main Contributions

© We develop arbitrary sampling variants of 3
popular variance-reduced methods for solving
the non-convex problem (1): SVRG [1], SAGA [2],
SARAH [3].

© We are able calculate the optimal sampling out
of all samplings of a given minibatch size. This
is the first time an optimal minibatch sampling
was computed (from the class of all samplings).

© We design importance sampling & approximate
importance sampling for minibatches, which
vastly outperform standard uniform minibatch
strategies in practice.
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Key Lemma
Let €1, €, - -,y be vectors in R? and let ¢ &f

%Zf’zl ¢ be their average. Let S be a proper sam-

pling. Let v = (vy,...,v,) > 0 be such that
P —pp" < Diag(pivi, psvs, .., puvn). (2)
Then

E

ics MPi
Whenever (2) holds, it must be the case that
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v > 1—p.

Optimal Sampling & Superlinear
Speedup

o Under our analysis, the independent sampling
S* defined by

b+ k —n)=—
5|0+ 7L>Z‘,:1L,~ ’
1, ifi >k
is optimal, where k is the largest integer

k

satisfying 0 < b+k —n < Z'Ei

ifi<k

o All 3 methods enjoy superlinear speed in b up
to the minibatch size
bax = max{b | bL, < ¥ L;}.
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Samplings

o Uniform S“: Every subset of [n] of size b
(minibatch size) is chosen with the same
probability: 1/(;)

e Independent S*: For each i € [n] we
independently flip a coin, and with probability
p; include element 7 into S.

¢ Approximate Independent S5 Fix some
k € [n] and let a = [kmax;<; p;]. We now
sample a single set S of cardinality a using the
uniform minibatch sampling S*. Subsequently,
we apply an independent sampling S* to select
elements of S’, with selection probabilities
p} = kpi/a. The resulting random set is S“.
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SVRG with Arbitrary Sampling

Algorithm 1: SVRG

=2l =2% M = [T/m];

for s=0to M —1do

o§t = a5 g = LS V()

fort =0 tom —1do
Draw a random subset (minibatch) S; ~ S
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Output: Iterate z, chosen uniformly

random from {{z;*!}" }M
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Numerical Results
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