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In this work we present three different randomized gossip algorithms for solving the
average consensus problem while at the same time protecting the information about the
initial private values stored at the nodes. We give iteration complexity bounds for all
methods, and perform extensive numerical experiments.
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Outline

Part 1: Average Consensus Problem

* The Problem

* Applications

* Standard Randomized Gossip Algorithm
* Connections to Optimization

Part 2: Privacy Preserving Average Consensus

* Binary Oracle

* ¢ -Gap Oracle

e Controlled Noise Insertion
* Theory

* Experiments
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The Average Consensus

Problem




Undirected & connected graph
* nnodes

* m edges (communication links)
* node jstores o}

/

Average Consensus Problem:

Compute the average ot the values c1,cs, ..., ¢,
Communication links = edges



Applications

Social network mining
Nodes: people

Edges: friendship

Task: Compute average salary

Sensor network computations
Nodes: sensors

Edges: close-by sensors

Task: Compute average temperature

Federated averaging/learning
Nodes: mobile devices

Edges: communication links

Task: Compute average ML model




Federated Learning

ith Bonawitz will talk about th




Google Research Blog

The latest news from Research at Google

Federated Learning: Collaborative Machine Learning without

Centralized Training Data
Thursday, April 06, 2017

Posted by Brendan McMahan and Daniel Ramage, Research Scientists

Standard machine learning approaches require centralizing the training data on one machine orin a
datacenter. And Google has built one of the most secure and robust cloud infrastructures for
processing this data to make our services better. Now for models trained from user interaction with
mobile devices, we're introducing an additional approach: Federated Learning.

Federated Learning enables mobile phones to collaboratively learn a shared prediction model while

keeping all the training data on device, decoupling the ability to do machine learning from the need to

store the data in the cloud. This goes beyond the use of local models that make predictions on mobile

devices (like the Mobile Vision APl and On-Device Smart Reply) by bringing model training to the
device as well.

It works like this: your device downloads the current model, improves it by learning from data on your
phone, and then summarizes the changes as a small focused update. Only this update to the model is
sent to the cloud, using encrypted communication, where it is immediately averaged with other user
updates to improve the shared model. All the training data remains on your device, and no individual
updates are stored in the cloud.



Federated Learning allows for smarter models, lower latency, and less power consumption, all while
ensuring privacy. And this approach has another immediate benefit: in addition to providing an update
to the shared model, the improved model on your phone can also be used immediately, powering
experiences personalized by the way you use your phone.

We're currently testing Federated Learning in Gboard on Android, the Google Keyboard. When Gboard
shows a suggested query, your phone locally stores information about the current context and
whether you clicked the suggestion. Federated Learning processes that history on-device to suggest
improvements to the next iteration of Gboard's query suggestion model.
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To make Federated Learning possible, we had to overcome many algorithmic and ** chnical
challenges. In a typical machine learning system, an optimization algorithm like< (ochastic Gradient
Descent (SGD) runs on a large dataset partitioned homogeneously across se:" zrs in the cloud. Such
highly iterative algorithms require low-latency, high-throughput connection< .0 the training data. But.i:
the Federated Learning setting, the data is distributed across millions of  evices in a highly une:=
fashion. In addition, these devices have significantly higher-latenc lo® er-throughput conr< .ions
and are only intermittently available for training.

These bandwidth and latency limitations motivate our Federated Averagina« jorithm, which can train
deep networks using 10-100x less communication compared to a naiv*, rederated version of SGD.
The key ideais to use the powerful processors in modern mobile<"_vices to compute higher quality
updates than simple gradient steps. Since it takes fewer iter< ons of high-quality updates to produce
a good model, training can use much less commu’ ca*" .. As upload speeds are typically much
slower than download speeds, we also develope’ ..ovel way to reduce upload communication costs
up to another 100x by compressing updates using ranaom rotations and quantization. W' ¢ these
approaches are focused on training deep networks, we've also designed algorithms f& -
dimensional sparse convex models which excel on problems like click-through-rate predictiv.i.
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Communication-Efficient Learning of Deep Networks from Decentralized Data

H. Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, Blaise Agiiera y Arcas
(Submitted on 17 Feb 2016 (v1), last revised 28 Feb 2017 (this version, v3))

Modern mobile devices have access to a wealth of data suitable for learning models, which in turn can greatly improve the user experience on the device.
For example, language models can improve speech recognition and text entry, and image models can automatically select good photos. However, this
rich data is often privacy sensitive, large in quantity, or both, which may preclude logging to the data center and training there using conventional
approaches. We advocate an alternative that leaves the training data distributed on the mobile devices, and learns a shared model by aggregating locally-
computed updates. We term this decentralized approach Federated Learning.

We present a practical method for the federated learning of deep networks based on iterative model averaging, and conduct an extensive empirical
evaluation, considering five different model architectures and four datasets. These experiments demonstrate the approach is robust to the unbalanced
and non-IID data distributions that are a defining characteristic of this setting. Communication costs are the principal constraint, and we show a
reduction in required communication rounds by 10-100x as compared to synchronized stochastic gradient descent.
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Federated Learning: Strategies for Improving Communication Efficiency

Jakub Koneény, H. Brendan McMahan, Felix X. Yu, Peter Richtdrik, Ananda Theertha Suresh, Dave Bacon
(Submitted on 18 Oct 2016)

Federated Learning is a machine learning setting where the goal is to train a high-quality centralized model with training data distributed over a large
number of clients each with unreliable and relatively slow network connections. We consider learning algorithms for this setting where on each round,
each client independently computes an update to the current model based on its local data, and communicates this update to a central server, where the
client-side updates are aggregated to compute a new global model. The typical clients in this setting are mobile phones, and communication efficiency is
of utmost importance. In this paper, we propose two ways to reduce the uplink communication costs. The proposed methods are evaluated on the
application of training a deep neural network to perform image classification. Our best approach reduces the upload communication required to train a
reasonable model by two orders of magnitude.

arXiv.org > cs > arXiv:1610.02527

Search or Article ID inside arXiv Al papers
(Help | Advanced search)

Computer Science > Learning

Federated Optimization: Distributed Machine Learning for On-Device Intelligence

Jakub Konecny, H. Brendan McMahan, Daniel Ramage, Peter Richtdrik
(Submitted on 8 Oct 2016)

We introduce a new and increasingly relevant setting for distributed optimization in machine learning, where the data defining the optimization are
unevenly distributed over an extremely large number of nodes. The goal is to train a high-quality centralized model. We refer to this setting as Federated
Optimization. In this setting, communication efficiency is of the utmost importance and minimizing the number of rounds of communication is the
principal goal.

A motivating example arises when we keep the training data locally on users' mobile devices instead of logging it to a data center for training. In
federated optimziation, the devices are used as compute nodes performing computation on their local data in order to update a global model. We
suppose that we have extremely large number of devices in the network —--- as many as the number of users of a given service, each of which has only a
tiny fraction of the total data available. In particular, we expect the number of data points available locally to be much smaller than the number of
devices. Additionally, since different users generate data with different patterns, it is reasonable to assume that no device has a representative sample of
the overall distribution.

We show that existing algorithms are not suitable for this setting, and propose a new algorithm which shows encouraging experimental results for sparse
convex problems. This work also sets a path for future research needed in the context of \federated optimization.




Deploying this technology to millions of heterogenous phones running Gboard requires a
sophisticated technology stack. On device training uses a miniature version of TensorFlow. Caref:+*
scheduling ensures training happens only when the device is idle, plugged in, and on a free wii -~ _

connection, so there is no impact on the phone's performance. .1 I e n SO r F I '.
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Your phone participates in Federated Learning only
when it won't negatively impact your experience.

The system then needs to communicate and aggregate the model updates in a secure, efficient,

scalable, and fault-tolerant way. It's only the combination of research with this infrastructure that PraCtical Secure Aggregati()n
makes the benefits of Federated Learning possible. fOr PriVacy-PreserVing MaChine Learning

Federated learning works without the need to store user data" the cloud, but we're not stopping

there. We've developed a Secure Aggregation protocol thed 10, L0, apiie weuinigues sU d Keith Bonawitz*, Vladimir Ivanov*, Ben Kreuter*, Antonio Marcedone'*,
coordinating server can only decrypt the average update if 10uor 1000s of users have participated H. Brendari(l;\/lclvllahfgo(,) Sarvir'ﬂf’atel > DI‘:I“"'] Ramag? > Aarocnalsfga! a;‘&?““ Seth
— no individual phone's update can be inspected before averaging. It's the first protocol of its kind . . 008, Amphitheatre Parkway Mountain View, California 9
. X . O . {bonawitz, vlivan, benkreuter, mcmahan, sarvar, dramage, asegal, karn}@google.com
that is practical for deep-network-sized problems and real-world connectivity constraints. We tCornell University, Ithaca, New York 14853
designed Federated Averaging so the coordinating server only needs the average update, which marcedone@cs.cornell.edu

allows Secure Aggregation to be used; however the protocol is general and can be applied to other
problems as well. We're working hard on a production implementation of this protocol and expect to
deploy it for Federated Learning applications in the near future.



Ananda T. Suresh, Felix X. Yu, H. Brendan McMahan, and Sanjiv
Kumar

Distributed Mean Estimation with Limited Communication

Adobe  arXiv:1611.00429, 2016
Jakub Konecny and Peter Richtarik
Randomized Distributed Mean Estimation: Accuracy vs
) Communication
Adobe

arXiv:1611.07555, 2016




The (Standard)

Stephen Boyd, Arpita Ghosh, Balaji Prabhakar, and Devavrat Shah
Randomized Gossip Algorithms
Mdobe IEEE Transactions on Information Theory 52.6 (2006), pp. 2508—2530
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Randomized (Pairwise) Gossip Algorithm
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Randomized Gossip Algorithm
(Formalized)

0 _

S =c;foralli=1,2,...)n

1. Initialize x

2. For t > 0 1iterate:

(a) Pick a random edge (i, j)
t41 , ®t;
(b) Set x} 5
t+1 x; +;
(c) Set -
(d) Set ztt1 =zt for all u & {7, 7}



Randomized Gossip

~ Optimization Algorith




Private node

H# nodes
values

We want all nodes to
find the same number;

minimize — (.CIS‘Z — Ci)2 the average of the
private values:

. - 1 <&
subject to T] =Ty ="' =Ty S T
n “ ‘

1=1
r* =c-1

Lemma
The solution is 7 = ¢ for all ¢



Encoding Constraints via the
Incidence Matrix of the Graph

L1 — X9 — X3 — X4 — Ip

Incidence matrix
of the graph
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Optimization Problem

Recall:

.
/;1000\z1 0
10 -1 0 0 T2 0
01 10 3| |0
0 01 -10 7 0
Ko001-1/~w5‘ 0

minimize P(x) subjectto Az =0, z € R"




=
=
S
=
o

Robert Mansel Gower and P.R. GR 2015a
Randomized Iterative Methods for Linear Systems
SIAM Journal on Matrix Analysis and Applications 36(4):1660-1690, 2015

=
=
S
=
o

Robert Mansel Gower and P.R. GR 2015b
! Stochastic Dual Ascent for Solving Linear Systems Randomized Gossip as an optimization
Adobe arXiv:1512.06890, 2015 method + duality

Nicolas Loizou and P.R. LR 2016

A New Perspective on Randomized Gossip Algorithms
In Proceedings of The 4t IEEE Global Conference on Signal Processing, 2016

=

P.R. and Martin Takac RT 2017
Stochastic Reformulations of Linear Systems: Algorithms and Convergence Theory

arXiv:1706.01108, 2017
Randomized Gossip is: E—

e Stochastic Gradient Descent

e Stochastic Newton Method

* Stochastic Proximal Point Method
e Stochastic Fixed Point Method

e Stochastic Projection Method




Randomized Gossip

D 1al Optimization Algorithm




Primal Problem 'ncidence matrix

of 1
min {P(m) o Ha: —c|* subject to Ax = 0}

rceR"
# nodes Vector of private values
Dual Problem stored at the nodes
det T 4T LT 2
max D(y) = —c' A y— S[[A 9
yeR™ 2
# edges

Duality mapping:  x(y )def +AT

Lemma [GR 2015b]
1

D(y") - D(y) = 51" — 2(y)|



Unit basis vector in R™ corresponding to edge (73, j)

Dual Method

y' =y' + Xe;; where N =arg I)I}E%D(yt + Aeij) y' =0
<

Theorem [GR 2015b]

Mapping the iterates of the dual method via the duality mapping
t t
x' < x(y")

gives the standard randomized gossip method



Algebraic connectivity of the graph, i.e., smallest
nonzero eigenvalue of the Laplacian: [, = AT A

Theorem [HKLRG 2017]

ED@") - DY) < (1- =) [D(y") - D(y°)

* Follows by applying the lemma: D(y*) — D(y) = =|jz* — 2(y)
* First donein [GR 2015b]
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Private Gossip via

Binary Oracle




1. Initialize ¥ = ¢; for all i = 1,2,...,n
2. For t > 0 iterate:

(a) Pick a random edge (i, j)
(b) If 27 < ¥, set |

“Stepsize”
° x§+1 < xf + A\
t+1 E oyt
PRI el 5 A
(c) If x} > %, set
o it gt — )

o x§+1 — xj + )\

(d) Set xtt! = at for all u & {i,7}

e I

In (standard) randomized
gossip we instead had:

+
St ztH! T

Set zitt —w:;m;
J

Privacy protection

Node i only learns
about j:

whether his/her value is

smaller or larger

Implementation

Secure multi-party
protocol between nodes



Dual function gr=3" (A"

Theorem [HKLRG 2017]

min [E[L'] <

t=0,1,...,k ak ak
1 k
def k _ t
A D D —
n edges (i,5) Algebraic connectivity t=0

Proposition [HKLRG 2017] va|a' —2*|| < mL! < mn|a! — 27|



Corollary (constant stepsize) error

y G . t <
A=A">0 t:glllfl“)kE[L < )\O(k + 1)

O(1/Vk)

Corollary (optimal constant stepsize)

_ [D(y*) — D(y°) 1 EI[L < 24/ 2E@)=DGE")
At‘\/ k+1 (=0, 1o L= o



Impractical: global information is needed

Theorem [HKLRG 2017]  \! = f(z} af, ... 2t)

n

G t
if[|" — 27" < (1 AG) |20 — 2|7
2m?
Gives a “bound” on the Standard randomized gossip has

“limits” of the binary oracle TN, instead of m2



Experimental Setup

e 2D Random Geometric Graph on 100 nodes
* Important in wireless sensor network modelling

* Nodes placed uniformly in a square; edges between close-by
nodes
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Experiment

Evolution of values in nodes
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Private Gossip via

e-Gap Oracle




1. Initialize 2 = ¢; for all i =1,2,...

2. For t > 0 iterate:

(a) Pick a random edge (¢, )

(b) If 27 <% — ¢, 0

J

o it x4 ¢/2

° §+1 %:I: —€/2
(c) If 27 >z + ¢, set
o it gzt —¢/2

o t-“ = xj +€/2

, T

Binary
oracle
had

)\t

here

(d) Set zttl =zt for all u & {7, 7}

Binary oracle had 0 here

Privacy protection
Node i only learns

than that of node j

Implementation

Secure multi-party
protocol between nodes



Dual function

Theorem [HKLRG 2017] O(1/k)

n _1 kz_:l At(é)_ < 4 (D(y*) o D(y()))
k — _

— ke?
def 1
MYEL S AL s [ T e
edges (1,7) *J O, otherwise.

1
. It=_— ot — ot
Observation ¢ - At(e) < Lt medgm' {—af



Relative Error

Experiment

Evolution of node values
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Private Gossip via

Controlled Noise Insertion




1

“Do standard gossip except

0 _

S =c;forallt=1,2,...,n

1. Initialize z

2. For t > 0 iterate: Standard gossip
. o = red stuff is zero
(a) Pick a random edge (7, )
(et +wi)+(zt+w,))
2
(zt4w')+(zt+w'7)  Redstuff=Noise
7 7 J J

(b) Set z‘*!

t4+1
(c) Set z ™" < 5

(d) Set ztt! = at for all u & {i,5}



Structure of the Noise

(Whenever node i is activated, it adds the structured noise to its value as a privacy measure)




Theorem [HKLRG 2017]

Total noise in the system vanishes over time:

2
. 1l
tlggo]E<cEZ;azi> =



Theorem [HKLRG 20171

n t
Weighted sum of P = — ! 2y Zdiaf (1 _& (1- ¢z2)>

exponentials: >i—1 (dio;

noise decrease

= zpt depends only on biggest of 1 — di (1 — ¢2)for large ¢ rate
m

—> Increasing @;for other ¢ does not influence the bound



degree of node j

d; 2
1 — E (1 — ¢z) is a constant

Corollary




Relative Error
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Effect of the Noise Decrease Rate
on Convergence

All nodes have the same noise
decrease rate
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Relative Error

Comparing with Theory
& Standard Gossip

Maximal noise decrease rate

Comparison with theory and Histogram of maximal values ¢,
Standard Gossip not violating convergence rate
101 g 16 y
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1077 12 1
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Summary




Summary

* Introduced the average consensus problem and mentioned

e Sensor networks
e Social networks
* Federated learning

* Reviewed the standard randomized gossip algorithm

* Introduced 3 new “privacy preserving” randomized gossip
algorithms:
* PRG with Binary Oracle
* PRG with Gap Oracle
* PRG with Controlled Noise Insertion

* Proved bounds on # iterations for various measures of success
* Did not prove any formal privacy guarantees!



Convergence Results

Algorithm

Success Measure

Standard
Randomized Gossip

Private Randomized Gossip
(Binary Oracle)

Private Randomized Gossip
(Gap Oracle)

Private Randomized Gossip
(Controlled Noise Insertion)







