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Part	1:	Average	Consensus	Problem
• The	Problem
• Applications
• Standard	Randomized	Gossip	Algorithm
• Connections	to	Optimization

Part	2:	Privacy	Preserving	Average	Consensus
• Binary	Oracle
• -Gap	Oracle
• Controlled	Noise	Insertion
• Theory
• Experiments

✏
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Part	1
Average	Consensus

&	
Randomized	Gossip

Algorithm



The	Average	Consensus
Problem



c1 c2 c3

c4

c5cn

Compute the average of the values c1, c2, . . . , cn

Average	Consensus	Problem:

Communication links = edges

Undirected	&	connected	graph
• n nodes
• m edges	(communication	links)
• node	i stores	private	value ci



Applications

Social	network	mining
Nodes: people
Edges: friendship
Task: Compute	average	salary

Sensor	network	computations
Nodes: sensors
Edges:	close-by	sensors
Task:	Compute	average	temperature

Federated	averaging/learning
Nodes:mobile	devices
Edges: communication	links
Task: Compute	average	ML	model



Federated	Learning
(Keith	Bonawitz will	talk	about	this)









More	on	Averaging

Ananda	T.	Suresh,	Felix	X.	Yu,	H.	Brendan	McMahan,	and	Sanjiv
Kumar	
Distributed	Mean	Estimation	with	Limited	Communication	
arXiv:1611.00429,	2016

Jakub	Konečný and	Peter	Richtárik
Randomized	Distributed	Mean	Estimation:	Accuracy	vs	
Communication
arXiv:1611.07555, 2016



The	(Standard)	
Randomized	Gossip	Algorithm

Stephen	Boyd,	Arpita Ghosh,	Balaji Prabhakar,	and	Devavrat Shah	
Randomized	Gossip	Algorithms	
IEEE	Transactions	on	Information	Theory	52.6	(2006),	pp.	2508–2530

BGPS	2006
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Randomized	Gossip	Algorithm	
(Formalized)

1. Initialize x

0
i

= c

i

for all i = 1, 2, . . . , n

2. For t � 0 iterate:

(a) Pick a random edge (i, j)

(b) Set x

t+1
i

 x

t
i+x

t
j

2

(c) Set x

t+1
j

 x

t
i+x

t
j

2

(d) Set x

t+1
u

= x

t

u

for all u /2 {i, j}



Randomized	Gossip
=

Optimization	Algorithm



Averaging	via	Optimization

#	nodes Private	node	
values

c̄
def
=

1

n

nX

i=1

ci

Lemma

We	want	all	nodes	to	
find	the	same	number;	
the	average	of	the	
private	values:

minimize

1

2

nX

i=1

(xi � ci)
2

subject to x1 = x2 = · · · = xn

x

⇤ = c̄ · 1
The solution is x

⇤
i = c̄ for all i
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Incidence	matrix	of	the	graph

Optimization	Problem

P (x) =
1

2
kx� ck2 =

1

2

nX

i=1

(xi � ci)
2

minimize P (x) subject to Ax = 0, x 2 Rn

Recall:



More	Reading

Nicolas	Loizou and	P.R.
A	New	Perspective	on	Randomized	Gossip	Algorithms
In Proceedings	of	The	4th IEEE	Global	Conference	on	Signal	Processing, 2016

Robert	Mansel Gower	and	P.R.
Randomized	Iterative	Methods	for	Linear	Systems
SIAM	Journal	on	Matrix	Analysis	and	Applications	36(4):1660-1690, 2015

Robert	Mansel Gower	and	P.R.
Stochastic	Dual	Ascent	for	Solving	Linear	Systems
arXiv:1512.06890, 2015

Randomized	Gossip	as	an	optimization	
method	+	duality

P.R.	and	Martin	Takáč
Stochastic	Reformulations	of	Linear	Systems:	Algorithms	and	Convergence	Theory
arXiv:1706.01108, 2017

Randomized	Gossip	is:
• Stochastic	Gradient	Descent
• Stochastic	Newton	Method
• Stochastic	Proximal	Point	Method
• Stochastic	Fixed	Point	Method
• Stochastic	Projection	Method

GR	2015b

GR	2015a

RT	2017

LR	2016



Randomized	Gossip
=	

Dual	Optimization	Algorithm



Lemma	[GR	2015b]

Dual	Problem

min

x2Rn

⇢
P (x)

def
=

1

2

kx� ck2 subject to Ax = 0

�
Primal	Problem

Dual	Problem

max

y2Rm
D(y)

def
= �c>A>y � 1

2

kA>yk2

x(y)
def
= c+A

>
y

D(y⇤)�D(y) =
1

2
kx⇤ � x(y)k2

Duality	mapping:

#	edges

#	nodes

Incidence	matrix

Vector	of	private	values	
stored	at	the	nodes

x(0) = c



Randomized	Gossip:	Dual	View

Dual	Method

yt+1
= yt + �teij where �t

= argmax

�2R
D(yt + �eij)

Unit basis vector in Rm
corresponding to edge (i, j)

y0 = 0

x

t  x(yt)

Theorem	[GR	2015b]

gives	the	standard	randomized	gossip	method

Mapping	the	iterates	of	the	dual	method	via	the	duality	mapping



Dual	Theory

Theorem	[HKLRG	2017]

E[D(y⇤)�D(yk)] 
⇣
1� ↵

2m

⌘k
[D(y⇤)�D(y0)]

Algebraic	connectivity	of	the	graph,	i.e.,	smallest	
nonzero	eigenvalue	of	the	Laplacian: L = A>A

• Follows	by	applying	the	lemma:
• First	done	in	[GR	2015b]

D(y⇤)�D(y) =
1

2
kx⇤ � x(y)k2



Part	2
Privacy	Preserving	
Randomized	Gossip

Algorithms



Private	Gossip	via
Binary	Oracle



Private	Gossip	via	Binary	Oracle
1. Initialize x

0
i = ci for all i = 1, 2, . . . , n

2. For t � 0 iterate:

(a) Pick a random edge (i, j)

(b) If x

t
i  x

t
j , set

• x

t+1
i  x

t
i + �

t

• x

t+1
j  x

t
j � �

t

(c) If x

t
i > x

t
j , set

• x

t+1
i  x

t
i � �

t

• x

t+1
j  x

t
j + �

t

(d) Set x

t+1
u = x

t
u for all u /2 {i, j}

In	(standard)	randomized	
gossip	we	instead	had:

Privacy	protection
Node	i only	learns	binary	
Information about	j:	
whether his/her	value	is	
smaller	or	larger

“Stepsize”

Implementation
Secure	multi-party	
protocol	between	nodes



Theorem	[HKLRG	2017]

Theory:	General	Stepsizes

↵k =
kX

t=0

�t

Dual	function �k =
kX

t=0

�
�t
�2

L

t def
=

1

m

X

edges (i,j)

|xt
i � x

t
j |

p
↵kxt � x

⇤k  mL

t 
p
mnkxt � x

⇤k

min
t=0,1,...,k

E[Lt]  D(y⇤)�D(y0)

↵k
+

�k

↵k

Proposition	[HKLRG	2017]

Algebraic	connectivity



Corollary	(constant	stepsize)

Theory:	Constant	Stepsizes

min
t=0,1,...,k

E[Lt]  D(y⇤)�D(y0)

�0(k + 1)
+ �0

�t = �0 > 0

Corollary	(optimal	constant	stepsize)

�t =

r
D(y⇤)�D(y0)

k + 1
min

t=0,1,...,k
E[Lt]  2

q
D(y⇤)�D(y0)

k+1

O(1/k)
error

O(1/
p
k)



Theorem	[HKLRG	2017]

Theory:	Adaptive	Stepsizes

E[kxt � x

⇤k2] 
✓
1� ↵(G)

2m2

◆t

kx0 � x

⇤k2

�

t = f(xt
1, x

t
2, . . . , x

t
n)

Impractical:	global	information	is	needed

Gives	a	“bound”	on	the	
“limits”	of	the	binary	oracle	

Standard	randomized	gossip	has	

m m2instead	of



Experimental	Setup
• 2D	Random	Geometric	Graph	on	100	nodes
• Important	in	wireless	sensor	network	modelling
• Nodes	placed	uniformly	in	a	square;	edges	between	close-by	
nodes



Best	non-adaptive	
stepsize

Experiment

Evolution	of	values	in	nodes



Private	Gossip	via			
-Gap	Oracle✏



1. Initialize x

0
i = ci for all i = 1, 2, . . . , n

2. For t � 0 iterate:

(a) Pick a random edge (i, j)

(b) If x

t
i  x

t
j � ✏, set

• x

t+1
i  x

t
i + ✏/2

• x

t+1
j  x

t
j � ✏/2

(c) If x

t
i > x

t
j + ✏, set

• x

t+1
i  x

t
i � ✏/2

• x

t+1
j  x

t
j + ✏/2

(d) Set x

t+1
u = x

t
u for all u /2 {i, j}

Private	Gossip	via	eps-Gap	Oracle

Privacy	protection
Node	i only	learns	that	
his/her	value	is	larger	or	
smaller	by	a	fixed	margin	
than	that	of	node	j

Binary	oracle	had	0	here

Implementation
Secure	multi-party	
protocol	between	nodes

Binary	
oracle	
had	

here
�t



Theorem	[HKLRG	2017]

Theory:	General	Stepsizes
Dual	function

E
"
1

k

k�1X

t=0

�t(✏)

#


4
�
D(y⇤)�D(y0)

�

k✏2

�t(✏)
def
=

1

m

X

edges (i,j)

�t
ij(✏)

�

t
ij(✏) =

(
1, |xt

i � x

t
j | � ✏,

0, otherwise.

✏ ·�t(✏)  Lt L

t =
1

m

X

edges (i,j)

|xt
i � x

t
j |

O(1/k)

Observation



After	some	time,	relative	error	is	
not	decreasing	anymore

Experiment

Evolution	of	node	values



Private	Gossip	via	
Controlled	Noise	Insertion



Private	Gossip	with	
Controlled	Noise	Insertion

1. Initialize x

0
i

= c

i

for all i = 1, 2, . . . , n

2. For t � 0 iterate:

(a) Pick a random edge (i, j)

(b) Set x

t+1
i

 (xt
i+w

ti
i )+(xt

j+w

tj
j )

2

(c) Set x

t+1
j

 (xt
i+w

ti
i )+(xt

j+w

tj
j )

2

(d) Set x

t+1
u

= x

t

u

for all u /2 {i, j}

Standard	gossip	
=	red	stuff	is	zero

“Do	standard	gossip	except	nodes	lie	about	their	private	value”

Red	stuff	=	Noise



Structure	of	the	Noise

Activation	counter	
of	node	i

wti
i = �ti

i v
ti
i � �ti�1

i vti�1
i

(Whenever	node	i is	activated,	it	adds	the	structured	noise	to	its	value	as	a	privacy	measure)

Ramdom variable	
generated	by	node	i
at	activation	time	t

Scaling	factor	for	node	i
0 < �i < 1

vti ⇠ N(0,�2
i )



Total	Noise	Eventually	Vanishes

lim
t!1

E
 
c� 1

n

nX

i=1

x

t
i

!2

= 0

Total	noise	in	the	system	vanishes	over	time:

Theorem	[HKLRG	2017]



degree	of	node	i

Theory

Theorem	[HKLRG	2017]

E[D(y⇤)�D(yk)]  ⇢k
�
D(y⇤)�D(y0)

�
+

P�
di�2

i

�

4m

kX

t=1

⇢k�t t

⇢ = 1� ↵(G)
2m

noise	decrease	
rate

 t =
1Pn

i=1 (di�
2
i )

nX

i=1

di�
2
i

✓
1� di

m

�
1� �2i

�◆t
Weighted	sum	of	
exponentials:

)  t tdepends	only	on	biggest	of																												for	large1� di
m

�
1� �2

i

�

) Increasing							for	other				does	not	influence	the	bound�i i



degree	of	node	i

Theory

�i =

r
1� �

di
1� di

m

�
1� �2

i

�
is	a	constant

8i : �  di

E[D(y⇤)�D(yk)] 
✓
1�min

✓
↵(G)
2m

,
�

m

◆◆k
 
D(y⇤)�D(y0) +

Pn
i=1

�
di�2

i

�

4m
k

!
Corollary



Effect	of	the	Noise	Decrease	Rate	
on	Convergence	

All	nodes	have	the	same	noise	
decrease	rate

Noise	decrease	rate	driven	by				
from	the	theory

�



Comparing	with	Theory	
&	Standard	Gossip

Comparison	with	theory	and	
Standard	Gossip

Histogram	of	maximal	values						
not	violating	convergence	rate	

�i

Maximal	noise	decrease	rate



Summary



Summary

• Introduced	the	average	consensus	problem	and	mentioned
• Sensor	networks
• Social	networks
• Federated	learning

• Reviewed	the	standard	randomized	gossip	algorithm
• Introduced	3	new	“privacy	preserving”	randomized		gossip	
algorithms:
• PRG	with	Binary	Oracle
• PRG	with	Gap	Oracle
• PRG	with	Controlled	Noise	Insertion

• Proved	bounds	on	#	iterations	for	various	measures	of	success
• Did	not	prove	any	formal	privacy	guarantees!



Convergence	Results

Algorithm Success	Measure Rate

Standard
Randomized	Gossip

Private Randomized	Gossip
(Binary	Oracle)

Private Randomized	Gossip
(Gap	Oracle)

Private Randomized	Gossip
(Controlled	Noise	Insertion)

E
⇥
1
2kx

k � x

⇤k2
⇤

min
tk

E

2

4 1
m

X

edges (i,j)

|xt
i � x

t
j |

3

5

E
"

1
k

k�1X

t=0

�t(✏)

#

E
⇥
1
2kx

k � x

⇤k2
⇤

⇣
1� ↵

2m

⌘k

O
✓

1

k✏2

◆
O
✓

1p
k

◆

✓
1� min{↵, 2�}

2m

◆k



THE	END


