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The Problem

min
x∈Rd

f (x) + R(x) (1)

∙ f (x) — convex function with Lipschitz gradient.
∙ R : Rd → R ∪ {+∞} — proximable (proper closed convex) regularizer

Eduard Gorbunov (MIPT) Unified SGD INRIA, 18.10.2019 3 / 27



Introduction SGD General analysis Special cases Discussion Bibliography

The Problem

min
x∈Rd

f (x) + R(x) (1)

∙ f (x) — convex function with Lipschitz gradient.

∙ R : Rd → R ∪ {+∞} — proximable (proper closed convex) regularizer

Eduard Gorbunov (MIPT) Unified SGD INRIA, 18.10.2019 3 / 27



Introduction SGD General analysis Special cases Discussion Bibliography

The Problem

min
x∈Rd

f (x) + R(x) (1)

∙ f (x) — convex function with Lipschitz gradient.
∙ R : Rd → R ∪ {+∞} — proximable (proper closed convex) regularizer

Eduard Gorbunov (MIPT) Unified SGD INRIA, 18.10.2019 3 / 27



Introduction SGD General analysis Special cases Discussion Bibliography

Structure of f in supervised learning theory and practice

We focus on the following situations

∙
f (x) = E𝜉∼𝒟 [f𝜉(x)] (2)

∙

f (x) =
1
n

n∑︁
i=1

fi (x). (3)

∙ f (x) = 1
n

∑︀n
i=1 fi (x) and

fi (x) =
1
m

m∑︁
j=1

fij(x), (4)

Typical case: Using the exact gradient of ∇f (x) is too expensive, but an
unbiased estimator of ∇f (x) can be computed efficiently.
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Popular approach to solve problem (1)

xk+1 = prox𝛾R(x
k − 𝛾gk). (5)

∙ gk is unbiased gradient estimator: E
[︀
gk | xk

]︀
= ∇f (xk)

∙ proxR(x)
def
= argminu

{︀1
2‖u − x‖2 + R(x)

}︀
∙ ‖ · ‖ — standard Euclidean norm

The prox operator
∙ x → proxR(x) is a function
∙ ‖ proxR(x)− proxR(y)‖ ≤ ‖x − y‖
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Stochastic gradient

There are infinitely many ways of getting unbiased estimator with “good”
properties.

∙ Flexibility to construct stochastic gradients in order to target desirable
properties:

∙ convergence speed
∙ iteration cost
∙ overall complexity
∙ parallelizability
∙ communication cost and etc.

∙ Too many methods
∙ Hard to keep up with new results
∙ Challenges in terms of analysis
∙ Some problems with fair comparison: different assumptions are used
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Bregman divergence

By Df (x , y) we denote the Bregman divergence associated with f :

Df (x , y)
def
= f (x)− f (y)− ⟨∇f (y), x − y⟩.
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Key assumption

Assumption 1

Let {xk} be the random iterates produced by proximal SGD.

1 The stochastic gradients gk are unbiased

E
[︁
gk | xk

]︁
= ∇f (xk) ∀k ≥ 0. (6)

2 There exist non-negative constants A,B,C ,D1,D2, 𝜌 and a (possibly)
random sequence {𝜎2

k}k≥0 such that the following two relations hold

E
[︂⃦⃦⃦

gk −∇f (x*)
⃦⃦⃦2

| xk
]︂
≤ 2ADf (x

k , x*) + B𝜎2
k + D1, (7)

E
[︀
𝜎2
k+1 | 𝜎2

k

]︀
≤ (1− 𝜌)𝜎2

k + 2CDf (x
k , x*) + D2, ∀k ≥ 0 (8)
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Gradient Descent satisfies Assumption 1

Assumption 2
Assume that f is convex, i.e.

Df (x , y) ≥ 0 ∀x , y ∈ Rd ,

and L-smooth, i.e.

‖∇f (x)−∇f (y)‖ ≤ L‖x − y‖ ∀x , y ∈ Rd .

Assumption 2 implies that (see Nesterov’s book [4])

‖∇f (x)−∇f (y)‖2 ≤ 2LDf (x , y) ∀x , y ∈ Rd .

Therefore, if f satisfies Assumption 2, then gradient descent satisfies
Assumption 1 with

A = L,B = 0,D1 = 0, 𝜎k = 0, 𝜌 = 1,C = 0,D2 = 0.
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Other assumptions

Assumption 3 (Unique solution)
The problem (1) has an unique minimizer x*.

Assumption 4 (𝜇-strong quasi-convexity)

There exists 𝜇 > 0 such that f : Rd → R is 𝜇-strongly quasi-convex, i.e.

f (x*) ≥ f (x) + ⟨∇f (x), x* − x⟩+ 𝜇

2
‖x* − x‖2 , ∀x ∈ Rd . (9)
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f (x*) ≥ f (x) + ⟨∇f (x), x* − x⟩+ 𝜇

2
‖x* − x‖2 , ∀x ∈ Rd . (9)
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Main result

Theorem 1
Let Assumptions 1, 3 and 4 be satisfied.

Choose constant M such that
M > B

𝜌 . Choose a stepsize satisfying

0 < 𝛾 ≤ min

{︂
1
𝜇
,

1
A+ CM

}︂
. (10)

Then the iterates {xk}k≥0 of proximal SGD satisfy

E
[︁
V k
]︁
≤ max

{︃
(1− 𝛾𝜇)k ,

(︂
1+

B

M
− 𝜌

)︂k
}︃
V 0 +

(D1 +MD2)𝛾
2

min
{︀
𝛾𝜇, 𝜌− B

M

}︀ ,
(11)

where the Lyapunov function V k is defined by V k def
=
⃦⃦
xk − x*

⃦⃦2
+M𝛾2𝜎2

k .
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Proximal Gradient Descent

We checked that GD satisfies Assumption 1 when f is convex and L-smooth
with

A = L,B = 0,D1 = 0, 𝜎k = 0, 𝜌 = 1,C = 0,D2 = 0.

We can choose M = 1 in Theorem 1 and get
∙ 0 < 𝛾 ≤ 1

L (since 𝜇 ≤ L and C = 0)
∙ V k = ‖xk − x*‖2 (since 𝜎k = 0)
∙ The rate: ‖xk − x*‖2 ≤ (1− 𝛾𝜇)k‖x0 − x*‖2

∙ In particular, for 𝛾 = 1
L we recover the standard rate for proximal

gradient descent:

k ≥ L

𝜇
log

1
𝜀

=⇒ ‖xk − x*‖2 ≤ 𝜀‖x0 − x*‖2.
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SGD-SR (see Gower et al. (2019), [3])

Stochastic reformulation

min
x∈Rd

f (x) + R(x), f (x) = E𝒟 [f𝜉(x)] , f𝜉(x)
def
=

1
n

n∑︁
i=1

𝜉i fi (x) (12)

1 𝜉 ∼ 𝒟: E𝒟 [𝜉i ] = 1 for all i
2 fi (for all i) is smooth, possibly non-convex function

Algorithm 1 SGD-SR

Input: learning rate 𝛾 > 0, starting point x0 ∈ Rd , distribution 𝒟 over 𝜉 ∈ Rn

such that E𝒟 [𝜉] is vector of ones
1: for k = 0, 1, 2, . . . do
2: Sample 𝜉 ∼ 𝒟
3: gk = ∇f𝜉(x

k)
4: xk+1 = prox𝛾R(x

k − 𝛾gk)
5: end for
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SGD-SR (see Gower et al. (2019), [3])

Expected smoothness
We say that f is ℒ-smooth in expectation with respect to distribution 𝒟 if
there exists ℒ = ℒ(f ,𝒟) > 0 such that

E𝒟

[︁
‖∇f𝜉(x)−∇f𝜉(x

*)‖2
]︁
≤ 2ℒDf (x , x

*), (13)

for all x ∈ Rd and write (f ,𝒟) ∼ ES(ℒ).

Eduard Gorbunov (MIPT) Unified SGD INRIA, 18.10.2019 16 / 27



Introduction SGD General analysis Special cases Discussion Bibliography

SGD-SR (see Gower et al. (2019), [3])

Lemma 1 (Generalization of Lemma 2.4, [3])
If (f ,𝒟) ∼ ES(ℒ), then

E𝒟

[︁
‖∇f𝜉(x)−∇f (x*)‖2

]︁
≤ 4ℒDf (x , x

*) + 2𝜎2. (14)

where 𝜎2 def
= E𝒟

[︁
‖∇f𝜉(x

*)−∇f (x*)‖2
]︁
.

That is, SGD-SR satisfies Assumption 1 with

A = 2ℒ,B = 0,D1 = 2𝜎2, 𝜎k = 0, 𝜌 = 1,C = 0,D2 = 0.

If 𝛾k ≡ 𝛾 ≤ 1
2ℒ then Theorem 1 implies that

E‖xk − x*‖2 ≤ (1− 𝛾𝜇)k‖x0 − x*‖2 +
2𝛾𝜎2

𝜇
.
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SAGA (see Defazio, Bach & Lacoste-Julien (2014), [1])

Consider the finite-sum minimization problem

f (x) =
1
n

n∑︁
i=1

fi (x) + R(x), (15)

where fi is convex, L-smooth for each i and f is 𝜇-strongly convex.

Algorithm 5 SAGA [1]

Input: learning rate 𝛾 > 0, starting point x0 ∈ Rd

1: Set 𝜓0
j = x0 for each j ∈ [n]

2: for k = 0, 1, 2, . . . do
3: Sample j ∈ [n] uniformly at random
4: Set 𝜑k+1

j = xk and 𝜑k+1
i = 𝜑ki for i ̸= j

5: gk = ∇fj(𝜑
k+1
j )−∇fj(𝜑

k
j ) +

1
n

∑︀n
i=1 ∇fi (𝜑

k
i )

6: xk+1 = prox𝛾R

(︀
xk − 𝛾gk

)︀
7: end for
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SAGA (see Defazio, Bach & Lacoste-Julien (2014), [1])

Lemma 2
We have

E
[︂⃦⃦⃦

gk −∇f (x*)
⃦⃦⃦2

| xk
]︂
≤ 4LDf (x

k , x*) + 2𝜎2
k

(16)

and

E
[︁
𝜎2
k+1 | xk

]︁
≤
(︂
1− 1

n

)︂
𝜎2
k +

2L
n
Df (x

k , x*), (17)

where 𝜎2
k = 1

n

n∑︀
i=1

⃦⃦
∇fi (𝜑

k
i )−∇fi (x

*)
⃦⃦2.
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SAGA (see Defazio, Bach & Lacoste-Julien (2014), [1])

That is, SAGA satisfies Assumption 1 with

A = 2L,B = 1,D1 = 0, 𝜌 =
1
n
,C =

L

n
,D2 = 0.

Theorem 1 with M = 4n implies that for 𝛾 = 1
6L

EV k ≤
(︂
1−min

{︂
𝜇

6L
,
1
2n

}︂)︂2

V 0.
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SGD-star

Consider the same situation as for SGD-SR. Recall that for SGD-SR we got

E‖xk − x*‖2 ≤ (1− 𝛾𝜇)k‖x0 − x*‖2 +
2𝛾𝜎2

𝜇
, 𝛾 ∈

(︃
0,

1
2ℒ

]︃

Algorithm 8 SGD-star

Input: learning rate 𝛾 > 0, starting point x0 ∈ Rd , distribution 𝒟 over
𝜉 ∈ Rn such that E𝒟 [𝜉] is vector of ones

1: for k = 0, 1, 2, . . . do
2: Sample 𝜉 ∼ 𝒟
3: gk = ∇f𝜉(x

k)−∇f𝜉(x
*) +∇f (x*)

4: xk+1 = prox𝛾R(xk − 𝛾gk)
5: end for
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SGD-star

Lemma 3 (Lemma 2.4 from [3])
If (f ,𝒟) ∼ ES(ℒ), then

E𝒟

[︂⃦⃦⃦
gk −∇f (x*)

⃦⃦⃦2
]︂
≤ 4ℒDf (x

k , x*). (18)

Thus, SGD-star satisfies Assumption 1 with

A = 2ℒ,B = 0,D1 = 0, 𝜎k = 0, 𝜌 = 1,C = 0,D2 = 0.

If 𝛾k ≡ 𝛾 ≤ 1
2ℒ then Theorem 1 implies that

E‖xk − x*‖2 ≤ (1− 𝛾𝜇)k‖x0 − x*‖2.
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Quantitative definition of variance reduction

Variance-reduced methods
We say that SGD with stochastic gradients satisfying Assumption 1 is
variance-reduced if D1 = D2 = 0.

∙ Variance-reduced methods converge to the exact solution
∙ The sequence {𝜎2

k}k≥0 reflects the progress of the variance reduction
process.
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Limitations and Extensions

1 We consider only L-smooth 𝜇-strongly quasi-convex case.

2 It would interesting to unify the theory for biased gradients estimator
(e.g. SAG [7], SARAH [5], zero-order optimization and etc.)

3 Our analysis doesn’t recover the best known rates for RCD type
methods with importance sampling.

4 An extension of iteration dependent parameters A,B,C ,D1,D2, 𝜌
would cover a new methods, such as SGD with decreasing stepsizes.

5 We consider only non-accelerated methods. It would be interesting to
provide an unified analysis of stochastic methods with acceleration and
momentum.
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