

IMPROVED ALGORITHMS FOR CONVEX MINIMIZATION IN RELATIVE SCALE

Peter Richtárik

Cornell University

International Symposium on Mathematical Programming
Rio de Janeiro

July 30-August 4, 2006

1. OUTLINE

- The problem; sublinearity
- Ellipsoidal rounding \Rightarrow first aprox. alg.
- Subgradient method \Rightarrow any accuracy
- Preliminary computational experiments
- Smoothing \Rightarrow faster algorithms
- Applications, future work

2. WHERE DO I GET MY IDEAS FROM?

3. THE PROBLEM

Minimize sublinear function f over affine subspace ${\mathcal L}$

$$f^* \longleftarrow \min\{f(x) \mid x \in \mathcal{L}\}$$

Goal: find solution x with relative error δ : $f(x) - f^* \leq \delta f^*$

Correspondence: $f(x) = \max\{\langle s, x \rangle \mid s \in Q\}$, where

 $\mbox{finite sublinear } f \quad \leftrightarrow \quad \mbox{nonempty convex compact } Q$

Assumptions:

- $f: \mathbb{E} \to \mathbb{R}$
- $0 \in \text{int } Q$
- $0 \notin \mathcal{L} \subset \mathbb{E}$

4. WHY SUBLINEAR FUNCTIONS?

Example: Minimizing the max of abs values of affine functions:

$$\min_{y \in \mathbb{R}^{n-1}} \max_{1 \le i \le m} \{ |\langle \bar{a}_i, y \rangle - c_i| \}$$

Homogenization:

$$a_i = [\bar{a}_i^T; -c_i], \ x = [y^T, \tau] \in \mathbb{R}^n$$
 gives

$$\min_{x \in \mathbb{R}^n} \{ \max_{1 \le i \le m} |\langle a_i, x \rangle| : x_n = 1 \}$$

So have $\min f(x)$ subject to $x \in \mathcal{L}$ where

- $f(x) = \max\{\langle s, x \rangle \mid s \in Q\}$
- $Q = \{\pm a_i; i = 1, \dots, m\}$ (or convex hull of this)
- $\bullet \ \mathcal{L} = \{ x \in \mathbb{R}^n \mid x_n = 1 \}$

5. FIRST IDEA

Notice:

- f "looks like" a norm
- it is easy to minimize a norm over an affine subspace

Idea:

- ullet Approximate f by a Euclidean norm $\|\cdot\|_G$ and compute the projection x_0
- How good is $f(x_0)$ compared to f^* ?

6. ELLIPSOIDAL ROUNDING

Assume we have found G and values

$$0 < \gamma_0 \le \gamma_1$$

such that

 $\Rightarrow \alpha$ -rounding

$$E(G, \gamma_0) \subseteq Q \subseteq E(G, \gamma_1),$$

where $E(G,r) = \{s : \sqrt{\langle s, G^{-1}s \rangle} \le r\}.$

Then $\gamma_0 \|x\|_G \leq f(x) \leq \gamma_1 \|x\|_G$ for all $x \in \mathbb{E}$

Theorem [John]: Every convex body admits a 1/n-rounding. Centrally symmetric bodies admit $1/\sqrt{n}$ -rounding.

7. KEY CONSEQUENCES

It can be shown that

$$(1) \frac{f(x_0)}{\gamma_1} \le ||x_0||_G \le \frac{f^*}{\gamma_0} \le \frac{f(x_0)}{\gamma_0}$$

(2)
$$||x^* - x_0||_G \le \frac{f^*}{\gamma_0}$$

(3) f is γ_1 -Lipschitz

Notice that

- (1) $\Rightarrow f(x_0) \leq (1+\delta)f^*$ with $\delta = \frac{1}{\alpha} 1$ $\Rightarrow O(1/\alpha)$ -approximation algorithm
- (2) + (3) suggest further use of **subgradient method** started from x_0

8. A SUBGRADIENT METHOD

Constant step-size subgradient algorithm:

- 1. Choose R such that $||x^* x_0||_G \leq R$
- 2. For $k = 0 \dots N 1$ repeat $x_{k+1} = x_k \frac{R}{\sqrt{N+1}}g$ (g is subgradient of f at x_k projected onto \mathcal{L} and normalized)
- 3. Output best point seen x

Theorem: $f(x) - f^* \le \frac{\gamma_1 R}{\sqrt{N+1}}$

Aiming for relative error:

- Available upper bound: $R = f(x_0)/\gamma_0 \Rightarrow N = \lfloor \frac{1}{\alpha^4 \delta^2} \rfloor$ iterations needed to get within $1 + \delta$ of f^*
- Ideal upper bound: $R = f^*/\gamma_0 \implies N = \lfloor \frac{1}{\alpha^2 \delta^2} \rfloor$
- **Nesterov's approach:** Start with the bad bound and iteratively improve it $\Rightarrow N = O(\frac{1}{\alpha^2 \delta^2} \ln \frac{1}{\alpha})$

9. BISECTION IDEA

Key lemma: If $f^*/\gamma_0 \leq R$ then subgradient method after

$$N = \lfloor \frac{1}{\beta^2 \alpha^2} \rfloor = O(\frac{1}{\alpha^2})$$

steps outputs x with

$$\frac{f(x)}{\gamma_0} \le R(1+\beta)$$

This leads to speedup of Nesterov's algorithm:

Approach	Complexity
"Ideal upper bound"	$O(\frac{1}{\alpha^2 \delta^2})$
Nesterov's algorithm	$O(\frac{1}{\alpha^2\delta^2} \ln \frac{1}{\alpha})$
Bisection algorithm	$O(\frac{1}{\alpha^2} \ln \ln \frac{1}{\alpha} + \frac{1}{\alpha^2 \delta^2})$

10. NON-RESTARTING ALGORITHM

- ullet Subgradient subroutine is always started from x_0
- Can we use collected information to start next routine from a different point?

Key lemma: If $f^*/\gamma_0 \leq R$ then subgradient method started from x_- , run for $N = \lfloor \frac{1}{\beta^2 \alpha^2} \rfloor$ steps with step lengths $(\|x_-\|_G + R)/\sqrt{N+1}$ outputs x with

$$\frac{f(x)}{\gamma_0} \le R(1+\beta) + \frac{f(x_-)}{\gamma_0}\beta$$

Approach	Complexity
Nesterov's algorithm	$O(\frac{1}{\alpha^2\delta^2}\ln\frac{1}{\alpha})$
Nonrestarting Nesterov's algorithm	$O(\frac{1}{\alpha^2\delta^2}\ln\frac{1}{\alpha})$
Bisection algorithm	$O(\frac{1}{\alpha^2} \ln \ln \frac{1}{\alpha} + \frac{1}{\alpha^2 \delta^2})$
Nonrestarting bisection algorithm	$O(\frac{1}{\alpha^2} \ln \frac{1}{\alpha} + \frac{4}{\alpha^2 \delta^2})$

11. SOME COMPUTATIONAL EXPERIMENTS

Problem:

$$\min f(x) \equiv \max_{i=1:m} |\langle a_i, x \rangle|$$
 subject to $\langle d, x \rangle = 1$

 We first construct a good and a bad ellipsoidal rounding of the centrally symmetric set

$$Q = \partial f(0) = \operatorname{Conv}\{\pm a_i, i = 1, \dots, m\}$$

- A good rounding has $\alpha \approx 1/\sqrt{n}$ and a bad $\alpha = 1/\sqrt{m}$.
- Random instances with $n = 100, m = 500, \delta = 0.05$.

α	Nest	Nest NR	Bis	decrease in f
1/11	$290100, 28, 2^{\dagger}$	725250, 70, 2	146654, 14, 5	$6.26 \downarrow 3.46$
1/11	145050, 15, 1	145050, 15, 1	147055, 14, 6	$4.97 \downarrow 3.05$
1/22	1160400, 117, 2	2901003, 291, 2	588235, 60, 6	$6.53 \downarrow 3.15$

[†] number of lower level iterations; time in seconds and number of calls of the subgradient method.

12. SMOOTHING - GENERAL IDEA

Some methods for minimizing convex functions:

f	Method	Complexity
non-smooth	Black-box subgradient method	$O(\frac{1}{\epsilon^2})$
smooth, ∇f Lipschitz	Efficient smooth method	$O(\sqrt{\frac{L}{\epsilon}})$
non-smooth	Nesterov's smoothing method	$O(\frac{1}{\epsilon})$

Yu. Nesterov. Smooth Minimization of Nonsmooth Functions, 2003

Basic Idea: Find smooth ϵ -approximation of f with $O(1/\epsilon)$ -Lipschitz gradient and then apply efficient smooth method

$$"O(\sqrt{O(1/\epsilon)/\epsilon}) = O(1/\epsilon)"$$

13. SMOOTHING

Assumptions:

- $Q_1 \subset \mathbb{E}_1, Q_2 \subset \mathbb{E}_2$; closed compact
- $A: \mathbb{E}_1 \to \mathbb{E}_2^*$, linear
- $f: \mathbb{E}_1 \to \mathbb{R}, \quad f(x) = \max\{\langle Ax, u \rangle_2 \mid u \in Q_2\}$

The problem: minimize f(x) subject to $x \in Q_1$

Smoothing: Let d_2 be nonnegative continuous and strongly convex on Q_2 with convexity parameter σ_2 . For $\mu > 0$ define

$$f_{\mu}(x) = \max\{\langle Ax, u \rangle_2 - \mu d_2(u) \mid u \in Q_2\}, \text{ then}$$

$$f_{\mu}(x) \leq f(x) \leq f_{\mu}(x) + \mu D_2$$
, where $D_2 = \max\{d_2(u) \mid u \in Q_2\}$

Theorem [Nesterov, 2003]: f_{μ} is smooth with Lipschitz continuous gradient with constant $L_{\mu} = \frac{\|A\|^2}{\mu\sigma_2}$

14. EFFICIENT SMOOTH METHOD

Problem: $\min_x \{ \phi(x) : x \in Q \}$

- Q convex compact set
- $\phi(x)$ convex & smooth
- \bullet $\nabla \phi(x)$ L-Lipschitz in $\|\cdot\|_G$

Method

For $k = 0, 1, \dots, N$ repeat

•
$$y_k := \arg\min_{y \in Q} \{ \langle \nabla \phi(x_k), y - x_k \rangle + \frac{L}{2} ||y - x_k||_G^2 \}$$

•
$$z_k := \arg\min_{z \in Q} \{ \langle \sum_{i=0}^k \frac{i+1}{2} \nabla \phi(x_i), z - x_i \rangle + \frac{L}{2} ||z - x_0||_G^2 \}$$

$$\bullet \ x_{k+1} := \frac{2}{k+3} z_k + \frac{k+1}{k+3} y_k$$

Output $x \leftarrow y_N$

Theorem [Nesterov]: $\phi(x) - \phi(x^*) \leq \frac{2L||x_0 - x^*||_G^2}{(N+1)^2}$

15. PUTTING IT ALL TOGETHER

Problem: min f(x) = F(Ax) subject to $x \in \mathcal{L}$ where

$$F(v) = \max\{\langle v, u \rangle_2 \mid u \in Q_2\}$$

where $A: \mathbb{R}^n \to \mathbb{R}^m$ full column rank, $0 \in \operatorname{int} \partial F(0) = \operatorname{int} Q_2$

Step 1: rounding

- Note: $\partial F(0) = Q_2 \quad \Rightarrow \quad \partial f(0) = A^T Q_2$
- find ball α -rounding: $B_{\|\cdot\|_2}(1) \subseteq \partial F(0) \subseteq B_{\|\cdot\|_2}(1/\alpha)$ so that $B_{\|\cdot\|_G^*}(1) \subseteq \partial f(0) \subseteq B_{\|\cdot\|_G^*}(1/\alpha)$ if $G = A^TA$

Step 2: smoothing $\Rightarrow L_{\mu} = 1/\mu$

Step 3: apply smooth method

$$f^* \le R \quad \Rightarrow \quad x^* \in Q(R) = \{x \mid ||x - x_0||_G \le R, \ x \in \mathcal{L}\}$$

Use bisection to find good R as before!

16. ALGORITHM COMPARISON

Theorem [R.05]: There is an algorithm for finding point within $(1+\delta)$ of f^* in $O(\frac{1}{\alpha} \ln \ln \frac{1}{\alpha} + \frac{1}{\alpha \delta})$ iterations of the efficient smooth method.

Approach	Complexity
Nesterov's algorithm	$O(\frac{1}{\alpha^2 \delta^2} \ln \frac{1}{\alpha})$
Nonrestarting Nesterov's algorithm	$O(\frac{\alpha_1}{\alpha^2\delta^2}\ln\frac{\alpha}{\alpha})$
Bisection algorithm	$O(\frac{1}{\alpha^2} \ln \ln \frac{1}{\alpha} + \frac{1}{\alpha^2 \delta^2})$
Nonrestarting bisection algorithm	$O(\frac{1}{\alpha^2} \ln \frac{1}{\alpha} + \frac{1}{\alpha^2 \delta^2})$
Nesterov's smoothing algorithm	$O(\frac{1}{\alpha\delta}\ln\frac{1}{\alpha})$
Smoothing bisection algorithm	$O(\frac{1}{\alpha} \ln \ln \frac{1}{\alpha} + \frac{1}{\alpha \delta})$

Note: The bisection improvement of the smoothing method has been earlier independently obtained by Fabián Chudak and Vânia Eleutério [2005] in the context of combinatorial problems (facility location, packing, scheduling unrelated parallel machines, ...).

17. APPLICATION EXAMPLES

minimizing the max of abs values of affine functions:

$$\min_{y \in \mathbb{R}^{n-1}} \max_{1 \le i \le m} \{ |\langle \bar{a}_i, y \rangle - c_i| \}$$

Rounding: $O(n^2(m+n)\ln m)$

Optimization: $O(\sqrt{n \ln m} (\ln \ln n + \frac{1}{\delta}))$ iters of order O(mn)

- minimization of largest eigenvalue
- minimization of the sum of largest eigenvalues
- minimization of spectral radius
- bilinear matrix games with nonnegative coefficients, and more

18. CURRENT AND FUTURE WORK

- Merging rounding and optimization phases
- Making the subgradient algorithms more practical: variable step lengths/line search.
- Non-ellipsoidal rounding. Sparse rounding.

19. ACKNOWLEDGEMENT

Big thanks to

- Yurii Nesterov for his papers!
 - Smooth minimization of nonsmooth functions, 2003
 - Unconstrained convex minimization in relative scale, 2003
 - Rounding of convex sets and efficient gradient methods for LP problems, 2004
- Mike Todd for enlightening discussions!

20. One more picture...

