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1. OUTLINE

e The problem; sublinearity

e Ellipsoidal rounding = first aprox. alg.
e Subgradient method =  any accuracy
e Preliminary computational experiments

e Smoothing = faster algorithms

e Applications, future work
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3. THE PROBLEM

Minimize sublinear function f over affine subspace [

ffe—min{f(z) |x € L}
Goal: find solution z with relative error 0: f(z) — f* < f*
Correspondence: f(x) = max{(s,x) | s € Q}, where

finite sublinear f <  nonempty convex compact ()

A
Assumptions: /f
‘] E-R e 2
e 0cintQ ~\ 22
c0¢LCE > \{)7




4. WHY SUBLINEAR FUNCTIONS?

Example: Minimizing the max of
abs values of affine functions:

yg}g}l 1%%};{“@@', y) — cil}

Homogenization:

a; = [al;—c], » = [yl,7] € R"
gives

min{ max |(a;, )| : 2o =1}

So have min f(x) subject to z € L where
e f(x) =max{(s,x)|s € Q}
o () ={%a;i=1,...,m} (or convex hull of this)
o L={zeR"|x,=1}



5. FIRST IDEA

Notice:

e f "looks like" a norm

e it is easy to minimize em | QU?)
L l_.-"‘7

A\
\l—\ ~

a norm over an affine ~\ /A
subspace \F—— %~
Idea:
e Approximate f by a Euclidean norm || - || and compute the

projection x

e How good is f(xy) compared to f*?



6. ELLIPSOIDAL ROUNDING

Assume we have found GG and values
0<y<m
such that
E(G, ) €Q C E(G,m), O
where E(G,r) = {s:\/(s,G71s) <r}.

Then yl|z]l6 < f(x) < m|z||¢ for all x € E

Key parameter: a = 7/7 € (0,1]
= a-rounding

Theorem [John]: Every convex body
admits a 1/n-rounding. Centrally sym-
metric bodies admit 1/4/n-rounding.




7. KEY CONSEQUENCES

[t can be shown that

(1) @ < aolle < £ < f%(’)

* _ I
(2) [l2" = wolle < =5

(3) f is y1-Lipschitz

[| x*- xol|c
WA .
Sxo)1 o Sx0)vo
Notice that
e (1) = flz) <(A+8)f with d==-1

=  O(1/a)-approximation algorithm

e (2) + (3) suggest further use of subgradient method started

from xg



8. A SUBGRADIENT METHOD

Constant step-size subgradient algorithm:
1. Choose R such that ||z* — z¢ll¢ < R

2. Fork=0...N — 1 repeat 11 = v —

R
VN1
(g is subgradient of f at x; projected onto £ and normalized)

3. Output best point seen x

Theorem: f(z) — f* < VJ\lf—Jil

Aiming for relative error:

e Available upper bound: R = f(zo)/7 = N = |-x]
iterations needed to get within 1 4 ¢ of f*

e Ideal upper bound: R= f*/vg = N =|-1]

a?s?
e Nesterov’s approach: Start with the bad bound and itera-
tively improve it = N =O(oxIn2)

0242



9. BISECTION IDEA

[[x* - x0] 6 R R(1+p)
AN
Sxo)/v1 Shro Sx0)vo

Key lemma: If f*/y9 < R then subgradient method after

N = L@zlazJ = O(é)

steps outputs x with

L2 <R(1+0)

T
Yo

This leads to speedup of Nesterov's algorithm:

Approach Complexity
"ldeal upper bound” O(=25)
Nesterov's algorithm O(=Ind)
Bisection algorithm | O(& Inln 4+ —)




10. NON-RESTARTING ALGORITHM

e Subgradient subroutine is always started from x

e Can we use collected information to start next routine from a
different point?

Key lemma: If f*/v < R then subgradient method started
from x_, run for N = Lﬁj steps with step lengths (||z_|l¢ +

R)/v/N + 1 outputs = with

19 < g+ g+ 15
0 70
Approach Complexity
Nesterov's algorithm O(=In<)
Nonrestarting Nesterov's algorithm O(=5 In %)
Bisection algorithm O(5nIni + —5)
Nonrestarting bisection algorithm | O(2;Ini + Oj(SQ)




11. SOME COMPUTATIONAL EXPERIMENTS

Problem:

min f(x) = max |(a;, x)| subjectto (d,x) =1

i=1:m

e We first construct a good and a bad ellipsoidal rounding of the
centrally symmetric set

Q = 0f(0) = Conv{=ta;,i =1,...,m}

e A good rounding has & ~ 1/y/n and a bad o = 1/{/m.
e Random instances with n = 100, m = 500, = 0.05.

Q@ Nest Nest NR Bis decrease in f
1/11 | 290100, 28, 21 725250,70,2 | 146654,14,5 | 6.26 | 3.46
1/11 | 145050, 15,1 145050, 15,1 | 147055,14,6 | 4.97 | 3.05
1/22 | 1160400, 117,2 | 2901003, 291, 2 | 588235,60,6 | 6.53 | 3.15

T number of lower level iterations; time in seconds and number of calls of the subgradient method.



12. SMOOTHING - GENERAL IDEA

Some methods for minimizing convex functions:

f Method Complexity
non-smooth Black-box subgradient method O(e%)
smooth, V f Lipschitz Efficient smooth method O(\/g)
non-smooth Nesterov's smoothing method O(%)

Yu. Nesterov. Smooth Minimization of Nonsmooth Functions, 2003

Basic Idea: Find smooth e-approximation of f with O(1/¢)-
Lipschitz gradient and then apply efficient smooth method

"0(/O(1]e)]e) = O(1/e)



13. SMOOTHING

Assumptions:

e ()1 C Eq,Qs C Es; closed compact

o A:E; — [E3, linear

o [:E =R, f(r)=max{(Az,u)s]|u€ Qs}
The problem: minimize f(z) subject to x € (4

Smoothing: Let ds be nonnegative continuous and strongly convex
on () with convexity parameter oy. For p > 0 define

fu(z) = max{(Ax, u)s — pudz(u) | u € @2}, then

fulw) < f(2) < fu(x) + pDa, where Dy = max{dy(u) | u € Qq}

Theorem [Nesterov, 2003]: f, is smooth with Lipschitz contin-
_ A2

uous gradient with constant L, = s



14. EFFICIENT SMOOTH METHOD

Problem: min,{¢(z) : x € Q}

e () - convex compact set

e ¢(x) - convex & smooth

o Vo(z) - L-Lipschitz in || - ||¢

b

yk/ Xk
Method
For k=0,1,..., N repeat

® Y 1= arg minyeQ{<V¢($k)a Yy— $k> + %H?J - xk”é}
® 2 1= arg minzeQ{<Zf:0 LAV G(x:), 2 — i) + 5| 2 — xol|3}

2 k41
® Tit1 = 5%kt o3k

Output = «— yy

Theorem [Nesterov]: ¢(z) — ¢(z*) < %



15. PUTTING IT ALL TOGETHER
Problem: min f(z) = F(Az) subject to © € £ where
F(v) = max{(v,u)s | u € Qs}
where A : R — R™ full column rank, 0 € int 9F(0) = int Qs

Step 1: rounding
e Note: OF(0) =@, = 9f(0) = ATQ,

e find ball a-rounding: By ,(1) € 0F(0) € By,(1/a) so that
BH'HE(l) C 8f(0) - BH-lIE(l/O‘) if G=ATA

Step 2: smoothing = L, =1/u
Step 3: apply smooth method
ff<R = x"e€QR)={x|||lr—2llc <R, xe€Ll}

Use bisection to find good R as before!



16. ALGORITHM COMPARISON

Theorem [R.05]: There is an algorithm for finding point within
(1+6) of f*in O(Inln 1+ L) iterations of the efficient smooth
method.

Approach Complexity
Nesterov's algorithm O(=In-)
Nonrestarting Nesterov's algorithm O(=5In )
. . . 1 1 1
Bisection algorithm O(zzInln = + —5)
Nonrestarting bisection algorithm O(LInt+ 1
’ ) ) a? 1 1a252
Nesterov's smoothing algorithm O(—51n~)
Smoothing bisection algorithm O(llnlni+ 1)

Note: The bisection improvement of the smoothing method has
been earlier independently obtained by Fabidn Chudak and Vania
Eleutério [2005] in the context of combinatorial problems (facility
location, packing, scheduling unrelated parallel machines, ...).



17. APPLICATION EXAMPLES

e minimizing the max of abs values of affine functions:

yg}&lnrll fg@%ﬂ(ai, y) — cil}

Rounding: O(n*(m +n)Inm)

Optimization: O(v/nlnm(Inlnn + 1)) iters of order O(mn)
e minimization of largest eigenvalue
e minimization of the sum of largest eigenvalues
e minimization of spectral radius

e bilinear matrix games with nonnegative coefficients, and more



18. CURRENT AND FUTURE WORK

e Merging rounding and optimization phases

e Making the subgradient algorithms more practical: variable
step lengths/line search.

e Non-ellipsoidal rounding. Sparse rounding.
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20. One more picture...

Pao de Acicar
view from Praia Vermelha
Rio de Janeiro
1.8.2006
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