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1. OUTLINE

• The problem; sublinearity

• Ellipsoidal rounding ⇒ first aprox. alg.

• Subgradient method ⇒ any accuracy

• Preliminary computational experiments

• Smoothing ⇒ faster algorithms

• Applications, future work



2. WHERE DO I GET MY IDEAS FROM?



3. THE PROBLEM

Minimize sublinear function f over affine subspace L

f ∗ ←− min{f(x) | x ∈ L}

Goal: find solution x with relative error δ: f(x)− f ∗ ≤ δf ∗

Correspondence: f(x) = max{〈s, x〉 | s ∈ Q}, where

finite sublinear f ↔ nonempty convex compact Q

Assumptions:

• f : E→ R

• 0 ∈ int Q

• 0 /∈ L ⊂ E



4. WHY SUBLINEAR FUNCTIONS?

Example: Minimizing the max of
abs values of affine functions:

min
y∈Rn−1

max
1≤i≤m

{|〈āi, y〉 − ci|}

Homogenization:
ai = [āT

i ;−ci], x = [yT , τ ] ∈ Rn

gives

min
x∈Rn
{max

1≤i≤m
|〈ai, x〉| : xn = 1}

So have min f(x) subject to x ∈ L where

• f(x) = max{〈s, x〉 | s ∈ Q}
• Q = {±ai; i = 1, . . . ,m} (or convex hull of this)

• L = {x ∈ Rn | xn = 1}



5. FIRST IDEA

Notice:

• f ”looks like” a norm

• it is easy to minimize
a norm over an affine
subspace

Idea:

• Approximate f by a Euclidean norm ‖ · ‖G and compute the
projection x0

• How good is f(x0) compared to f ∗?



6. ELLIPSOIDAL ROUNDING

Assume we have found G and values

0 < γ0 ≤ γ1

such that

E(G, γ0) ⊆ Q ⊆ E(G, γ1),

where E(G, r) = {s :
√
〈s, G−1s〉 ≤ r}.

Then γ0‖x‖G ≤ f(x) ≤ γ1‖x‖G for all x ∈ E

Key parameter: α = γ0/γ1 ∈ (0, 1]
⇒ α-rounding

Theorem [John]: Every convex body
admits a 1/n-rounding. Centrally sym-
metric bodies admit 1/

√
n-rounding.



7. KEY CONSEQUENCES

It can be shown that

(1) f(x0)
γ1
≤ ‖x0‖G ≤ f∗

γ0
≤ f(x0)

γ0

(2) ‖x∗ − x0‖G ≤ f∗

γ0

(3) f is γ1-Lipschitz

Notice that

• (1) ⇒ f(x0) ≤ (1 + δ)f ∗ with δ = 1
α − 1

⇒ O(1/α)-approximation algorithm

• (2) + (3) suggest further use of subgradient method started
from x0



8. A SUBGRADIENT METHOD

Constant step-size subgradient algorithm:

1. Choose R such that ‖x∗ − x0‖G ≤ R

2. For k = 0 . . . N − 1 repeat xk+1 = xk − R√
N+1

g

(g is subgradient of f at xk projected onto L and normalized)

3. Output best point seen x

Theorem: f(x)− f ∗ ≤ γ1R√
N+1

Aiming for relative error:

• Available upper bound: R = f(x0)/γ0 ⇒ N = b 1
α4δ2c

iterations needed to get within 1 + δ of f ∗

• Ideal upper bound: R = f ∗/γ0 ⇒ N = b 1
α2δ2c

• Nesterov’s approach: Start with the bad bound and itera-
tively improve it ⇒ N = O( 1

α2δ2 ln 1
α)



9. BISECTION IDEA

Key lemma: If f ∗/γ0 ≤ R then subgradient method after

N = b 1
β2α2c = O( 1

α2 )

steps outputs x with

f(x)
γ0
≤ R(1 + β)

This leads to speedup of Nesterov’s algorithm:

Approach Complexity
”Ideal upper bound” O( 1

α2δ2 )
Nesterov’s algorithm O( 1

α2δ2 ln 1
α)

Bisection algorithm O( 1
α2 ln ln 1

α + 1
α2δ2 )



10. NON-RESTARTING ALGORITHM

• Subgradient subroutine is always started from x0

• Can we use collected information to start next routine from a
different point?

Key lemma: If f ∗/γ0 ≤ R then subgradient method started
from x−, run for N = b 1

β2α2c steps with step lengths (‖x−‖G +

R)/
√

N + 1 outputs x with

f(x)

γ0
≤ R(1 + β) +

f(x−)

γ0
β

Approach Complexity
Nesterov’s algorithm O( 1

α2δ2 ln 1
α)

Nonrestarting Nesterov’s algorithm O( 1
α2δ2 ln 1

α)
Bisection algorithm O( 1

α2 ln ln 1
α + 1

α2δ2 )
Nonrestarting bisection algorithm O( 1

α2 ln 1
α + 1

α2δ2 )



11. SOME COMPUTATIONAL EXPERIMENTS

Problem:

min f(x) ≡ max
i=1:m

|〈ai, x〉| subject to 〈d, x〉 = 1

• We first construct a good and a bad ellipsoidal rounding of the
centrally symmetric set

Q = ∂f(0) = Conv{±ai, i = 1, . . . ,m}

• A good rounding has α ≈ 1/
√

n and a bad α = 1/
√

m.

• Random instances with n = 100, m = 500, δ = 0.05.

α Nest Nest NR Bis decrease in f

1/11 290100, 28, 2† 725250, 70, 2 146654, 14, 5 6.26 ↓ 3.46
1/11 145050, 15, 1 145050, 15, 1 147055, 14, 6 4.97 ↓ 3.05
1/22 1160400, 117, 2 2901003, 291, 2 588235, 60, 6 6.53 ↓ 3.15

† number of lower level iterations; time in seconds and number of calls of the subgradient method.



12. SMOOTHING - GENERAL IDEA

Some methods for minimizing convex functions:

f Method Complexity

non-smooth Black-box subgradient method O( 1
ε2 )

smooth, ∇f Lipschitz Efficient smooth method O(
√

L
ε )

non-smooth Nesterov’s smoothing method O(1
ε )

Yu. Nesterov. Smooth Minimization of Nonsmooth Functions, 2003

Basic Idea: Find smooth ε-approximation of f with O(1/ε)-
Lipschitz gradient and then apply efficient smooth method

”O(
√

O(1/ε)/ε) = O(1/ε)”



13. SMOOTHING

Assumptions:

• Q1 ⊂ E1, Q2 ⊂ E2; closed compact

• A : E1 → E∗2, linear

• f : E1 → R, f(x) = max{〈Ax, u〉2 | u ∈ Q2}
The problem: minimize f(x) subject to x ∈ Q1

Smoothing: Let d2 be nonnegative continuous and strongly convex
on Q2 with convexity parameter σ2. For µ > 0 define

fµ(x) = max{〈Ax, u〉2 − µd2(u) | u ∈ Q2}, then

fµ(x) ≤ f(x) ≤ fµ(x) + µD2, where D2 = max{d2(u) | u ∈ Q2}

Theorem [Nesterov, 2003]: fµ is smooth with Lipschitz contin-

uous gradient with constant Lµ = ‖A‖2
µσ2



14. EFFICIENT SMOOTH METHOD

Problem: minx{φ(x) : x ∈ Q}
• Q - convex compact set

• φ(x) - convex & smooth

• ∇φ(x) - L-Lipschitz in ‖ · ‖G

Method
For k = 0, 1, . . . , N repeat

• yk := arg miny∈Q{〈∇φ(xk), y − xk〉+ L
2‖y − xk‖2G}

• zk := arg minz∈Q{〈
∑k

i=0
i+1
2 ∇φ(xi), z−xi〉+ L

2‖z−x0‖2G}

• xk+1 := 2
k+3zk + k+1

k+3yk

Output x← yN

Theorem [Nesterov]: φ(x)− φ(x∗) ≤ 2L‖x0−x∗‖2G
(N+1)2



15. PUTTING IT ALL TOGETHER

Problem: min f(x) = F (Ax) subject to x ∈ L where

F (v) = max{〈v, u〉2 | u ∈ Q2}

where A : Rn → Rm full column rank, 0 ∈ int ∂F (0) = int Q2

Step 1: rounding

• Note: ∂F (0) = Q2 ⇒ ∂f(0) = ATQ2

• find ball α-rounding: B‖·‖2(1) ⊆ ∂F (0) ⊆ B‖·‖2(1/α) so that
B‖·‖∗G(1) ⊆ ∂f(0) ⊆ B‖·‖∗G(1/α) if G = ATA

Step 2: smoothing ⇒ Lµ = 1/µ

Step 3: apply smooth method

f ∗ ≤ R ⇒ x∗ ∈ Q(R) = {x | ‖x− x0‖G ≤ R, x ∈ L}

Use bisection to find good R as before!



16. ALGORITHM COMPARISON

Theorem [R.05]: There is an algorithm for finding point within
(1 + δ) of f ∗ in O( 1

α ln ln 1
α + 1

αδ) iterations of the efficient smooth
method.

Approach Complexity
Nesterov’s algorithm O( 1

α2δ2 ln 1
α)

Nonrestarting Nesterov’s algorithm O( 1
α2δ2 ln 1

α)
Bisection algorithm O( 1

α2 ln ln 1
α + 1

α2δ2 )
Nonrestarting bisection algorithm O( 1

α2 ln 1
α + 1

α2δ2 )
Nesterov’s smoothing algorithm O( 1

αδ ln 1
α)

Smoothing bisection algorithm O( 1
α ln ln 1

α + 1
αδ)

Note: The bisection improvement of the smoothing method has
been earlier independently obtained by Fabián Chudak and Vânia
Eleutério [2005] in the context of combinatorial problems (facility
location, packing, scheduling unrelated parallel machines, . . . ).



17. APPLICATION EXAMPLES

• minimizing the max of abs values of affine functions:

min
y∈Rn−1

max
1≤i≤m

{|〈āi, y〉 − ci|}

Rounding: O(n2(m + n) ln m)

Optimization: O(
√

n ln m(ln ln n + 1
δ )) iters of order O(mn)

• minimization of largest eigenvalue

• minimization of the sum of largest eigenvalues

• minimization of spectral radius

• bilinear matrix games with nonnegative coefficients, and more



18. CURRENT AND FUTURE WORK

• Merging rounding and optimization phases

• Making the subgradient algorithms more practical: variable
step lengths/line search.

• Non-ellipsoidal rounding. Sparse rounding.
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20. One more picture...
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