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1. Outline

e Sparse PCA
e Optimization reformulations
e Algorithm and complexity analysis

e Numerical experiments



2. Sparse PCA (sPCA)

e Input: Matrix A = [ay,...,a,) € RP*", p<mn

e Goal: Find unit-norm vector z* € R" which simultaneously
1. maximizes variance 27 AT Az
2. Is sparse

If sparsity is not required, z* is the dominant right singular vec-
tor of A:

max 2 AT Az = Apax(ATA) = (0max(A))%

2T2<1

Extracting more components: Discussion above is about the
single-unit case (m = 1). Often more components (sparse dom-
inant singular directions) are needed: block case (m > 1).

Applications: gene expression, finance, data visualization, signal
processing, vision, ...



3. Our approach to sPCA

1. Formulate sPCA as an optimization problem with sparsity-
inducing penalty (¢, or ¢y) controlled by a single parameter

2. Reformulate to get problem of a suitable form:

e suitable for analysis
e suitable for computation

3. “Solve” reformulation using a simple gradient scheme

4. Recover solution of the original problem

Will illustrate steps 1) and 2) and 4) on the single-unit ¢; penalized
case and then jump to general analysis of step 3).



4. Three observations about the /; penalty
Notation: ||z||; = >, |2il.

Penalty formulation of single-unit sPCA:

b, (7) £ max VZTATAz — ||z,

2T2<1
Observations:
1. v = 0 = no reason to expect zero coordinates in z*

2. v > ||ai]|2 ® max; |a;||, then z* = 0. Indeed, since
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3. In fact, v > ||aills = z/(v) =0 for all i

= mZ_aXHaiHQ.

(1)



5. Reformulation

Note that:
() = max [ Azfls — 7][2 Hl—maxmaxxTAz—'yHZHl
eBn xeBp
n
_ AT\ .
= maxmax 1 zila; ) — |z
Z:

For fixed x, the inner max-problem has the closed-form solution
2 =sign(a; v)(laj z] =]+, 27 = z/2]e.

Hence to solve (1), we only need to solve this reformulation:

n

2 _ T 2
0 (7) = max ) [la; x| =913, (2)
2T z=1 1=1

Note: The objective function of (2) is convex and smooth and
the feasible region is in R? instead of R" (p < n).



6. Single-unit sPCA via /, penalty

Similar story as in the /; case, so only briefly:
Notation: ||z||p = Card{: : z; # 0}.
Penalty formulation:

def
o (7) = max 2" AT Az — o |2]lo,

2T 2<1

To solve (3), first solve this reformulation:

n

b (7) = max } [(a;2)" =)+,
eTg=1 =1

and then set

5 = [sign((ala)? = )salz, 2 = z/|z]



7. Maximizing convex functions

Problems (2) and (4) (and their block generalizations) are of the
form

J© = max f(z), (P)

reQ

where
e E is a finite-dimensional vector space,
e f: E — R is a convex function,
e Q C E is compact.
In particular,
e Q = unit Euclidean sphere in R” / Single-unit case (m = 1)

e Q = Stiefel manifold in RP*"™, i.e. the set of p X m matrices
with orthonormal columns / Block case (m > 1)

How to solve (P)?



8. Gradient algorithm

We solve (P) using this simple gradient method:

1. Input: Initial iterate xy € Q
2. For k > 0 repeat

o 71 € Argmax{f(zi) + (f'(7x),y — ) |y € Q}
o k—k+1

This algorithm generalizes the power method for computing the
largest eigenvalue of a symmetric positive definite matrix C":

C(L‘k

) =12TCe — = ——
f( ) 2 k+1 ||C$kH2

Hence “Generalized Power Method” (GPower).



9. lteration complexity: basic result

At any point x € Q we introduce a measure for the first-order
optimality conditions:
def /
Aw) & max(f'(x),y — ).

yeQ

Clearly, A(x) > 0 and it vanishes only at the points where the
gradient f’(x) belongs to the normal cone to Conv(Q) at x.

Denote Ay & min A(x;).
0<i<k
Theorem Let sequence {z;}7°, be generated by GPower as ap-
plied to a convex function f. Then the sequence {f(zx)}%, is
monotonically increasing and I}im A(zy) = 0. Moreover,
—00

Ak<—f*_f($°).
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10. Strong convexity of functions and sets

Function f is strongly convex if there exists a constant o > 0
such that for any z,y € E

o
) 2 f@)+ (' @0)y =)+ Sy =l
The set Conv(Q) is strongly convex if there exists a constant
oo > 0 such that for any z,y € Conv(Q) and a € [0,1] the
following inclusion holds:

ar+ (1 —a)y + %a(l —a)l|lz —y|?*- S C Conv(Q).

Theorem If f : E — R is nonnegative, has oy > 0 and [’ is
L ¢-Lipschitz, then for any w > 0, the level set

Q. E (x| f(z) <w)

is strongly convex with parameter g, = 0y/+/2wLy.



11. Refined analysis under strong convexity

Theorem

Let
e f be convex with strong convexity parameter oy > 0, and
e Conv(Q) be convex with strong convexity parameter oo > 0.

If 0 <y =inf,eq||f'(z)]]+ and either oy > 0 or og > 0, then

l *
S i — gl < 27T @0),
k=0

UQ5f+Uf

Note: If f is not minimized on Q, then 07 > 0.



12. Computational experiments

We compare the following Sparse PCA algorithms:

GPowery,  Single-unit sparse PCA via {;-penalty [1]
GPowery, Single-unit sparse PCA via {y-penalty [1]
GPowery, ,, Block sparse PCA via ¢;-penalty [1]
GPowery, ,, Block sparse PCA via {y-penalty [1]

SPCA SPCA algorithm [2]
Greedy” Greedy method [3]
rSVD,, Method [4] with ¢;-penalty (“soft thresholding”)
rSVDy, Method [4] with {y-penalty (“hard thresholding™)

*Greedy slows down dramatically, compared to the other methods,
if aimed at obtaining a component of higher cardinality.

Test Problems:
e Randomly generated
A = Gaussian with zero mean and unit variance

e Gene-expression data



13. Trade-off curves
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Trade-off between explained variance and cardinality. The
algorithms aggregate in two groups. The methods GPower,,,
GPowery,, Greedy and rSVDy, do better (black solid lines), and
SPCA and rSVDy, do worse (red dashed lines).

Based on 100 random test problems of size p = 100, n = 300.



14. Controlling sparsity with ~
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Dependence of cardinality on the value of the sparsity-inducing
parameter . The horizontal axis shows a normalized interval
of reasonable values of 7. The vertical axis shows percentage of
nonzero coefficients of the resulting sparse loading vector z*.

Based on 100 random test problems of size p = 100, n = 300.



15. How does the trade-off evolve in time?
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Evolution of the explained variance (solid lines and left axis) and
cardinality (dashed lines and right axis) in time for the methods
GPowery, and rSVDy,.

Based on random test problem of size p = 250 and n = 2500.



16. Random data: speed

Fixed n/p ratio:

pXn 250 x 2500 500 x 5000 750 x 7500 1000 x 10000

GPowery, 0.85 2.61 3.89 5.32
GPower, 0.46 1.21 2.41 2.93
SPCA 2,77 14.0 41.0 81.6
rSVDy, 1.40 6.80 17.8 41.2
rSVDy, 1.33 6.20 15.4 36.3

Fixed p, growing n:

pXn 500 x 2000 500 x 4000 500 x 8000 500 x 16000

GPowery, 0.97 1.96 430 8.43
GPowery, 0.39 0.97 2.01 4.63
SPCA 7.37 11.4 22.4 44.6
rSVDy, 2.56 5.27 11.3 26.8

rSVDy, 2.30 4.70 10.3 23.8




17. Gene expression data: speed

Data sets (breast cancer cohorts):

Study Samples (p) Genes (n) Reference

Vijver 295 13319  van de Vijver et al. [2002]
Wang 285 14913 Wang et al. [2005]
Naderi 135 8278 Naderi et al. [2006]
JRH-2 101 14223 Sotiriou et al. [2006]

Speed (in seconds):
Vijver Wang Naderi JRH-2
GPowery, 772 696 215 2.69
GPower, 380 407 133 1.73
GPowery, ,,, 540  4.37 1.77 1.14
GPowery,,, 5.61  7.21 2.25 1.47
SPCA 777 821 267 11.2
rSVDy, 46.4 493 138 15.7
rSVDy, 46.8 484 137 16.5




18. Gene expression data: content

PEIl-values based on 536 cancer-related pathways:
Vijver Wang Naderi  JRH-2
PCA 0.0728 0.0466 0.0149 0.0690
GPowery, 0.1493 0.1026 0.0728 0.1250
GPowery, 0.1250 0.1250 0.0672 0.1026
GPowery, ,, 0.1418 0.1250 0.1026 0.1381
GPower, ,, 0.1362 0.1287  0.1007 0.1250

SPCA 0.1362 0.1007 0.0840 0.1007
rSVDy, 0.1213 0.1175 0.0914 0.0914
rSVD,, 0.1175 0.0970 0.0634 0.1063

Pathway Enrichment Index (PEI) measures the statistical significance of the
overlap between two kinds of gene sets.



19. Summary

We have

e developed 4 reformulations (single unit/block x ¢;/¢y) of the
sPCA problem which enabled us to

— devise a very fast method (we work in dimension p < n
and use only gradients), and
— analyze the iteration complexity of the method;

e analyzed a simple gradient method (Generalized Power
Method) for maximizing convex functions on compact sets;

e applied GPower to 4 reformulations and ended-up with 4 algo-
rithms for sPCA:

e tested our algorithms on random and gene expression data:

— they outperform other methods significantly in speed
(finish before some other algorithms initialize),

— for the biological data, they produce slightly higher quality
of solution in terms of PEI.
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