
Generalized Power Method for Sparse
Principal Component Analysis

Peter Richtárik
CORE/INMA – Catholic University of Louvain – Belgium

VOCAL 2008, Veszprém, Hungary

CORE Discussion Paper #2008/70
joint work with M. Journée, Yu. Nesterov and R. Sepulchre

1. Outline

• Sparse PCA

• Optimization reformulations

• Algorithm and complexity analysis

• Numerical experiments

2. Sparse PCA (sPCA)

• Input: Matrix A = [a1, . . . , an] ∈ Rp×n, p ≤ n

• Goal: Find unit-norm vector z∗ ∈ Rn which simultaneously

1. maximizes variance zTATAz

2. is sparse

If sparsity is not required, z∗ is the dominant right singular vec-
tor of A:

max
zT z≤1

zTATAz = λmax(A
TA) = (σmax(A))2.

Extracting more components: Discussion above is about the
single-unit case (m = 1). Often more components (sparse dom-
inant singular directions) are needed: block case (m > 1).

Applications: gene expression, finance, data visualization, signal
processing, vision, ...

3. Our approach to sPCA

1. Formulate sPCA as an optimization problem with sparsity-
inducing penalty (`1 or `0) controlled by a single parameter

2. Reformulate to get problem of a suitable form:

• suitable for analysis

• suitable for computation

3. “Solve” reformulation using a simple gradient scheme

4. Recover solution of the original problem

Will illustrate steps 1) and 2) and 4) on the single-unit `1 penalized
case and then jump to general analysis of step 3).

4. Three observations about the `1 penalty

Notation: ‖z‖1 =
∑

i |zi|.

Penalty formulation of single-unit sPCA:

φ`1(γ)
def
= max

zT z≤1

√
zTATAz − γ‖z‖1. (1)

Observations:

1. γ = 0⇒ no reason to expect zero coordinates in z∗

2. γ ≥ ‖ai∗‖2
def
= maxi ‖ai‖, then z∗ = 0. Indeed, since

max
z 6=0

‖Az‖2
‖z‖1

= max
z 6=0

‖
∑

i ziai‖2
‖z‖1

≤ max
z 6=0

∑
i |zi|‖ai‖2∑

i |zi|
= max

i
‖ai‖2.

3. In fact, γ ≥ ‖ai‖2 ⇒ z∗i (γ) = 0 for all i

5. Reformulation

Note that:

φ`1(γ) = max
z∈Bn
‖Az‖2 − γ‖z‖1 = max

z∈Bn
max
x∈Bp

xTAz − γ‖z‖1

= max
x∈Bp

max
z∈Bn

n∑
i=1

zi(a
T
i x)− γ|zi|.

For fixed x, the inner max-problem has the closed-form solution

zi = sign(aT
i x)[|aT

i x| − γ]+, z∗ = z/‖z‖2.

Hence to solve (1), we only need to solve this reformulation:

φ2
`1

(γ) = max
x∈Rp

xT x=1

n∑
i=1

[|aT
i x| − γ]2+, (2)

Note: The objective function of (2) is convex and smooth and
the feasible region is in Rp instead of Rn (p� n).

6. Single-unit sPCA via `0 penalty

Similar story as in the `1 case, so only briefly:

Notation: ‖z‖0 = Card{i : zi 6= 0}.

Penalty formulation:

φ`0(γ)
def
= max

zT z≤1
zTATAz − γ ‖z‖0, (3)

To solve (3), first solve this reformulation:

φ`1(γ) = max
x∈Rp

xT x=1

n∑
i=1

[(aT
i x)2 − γ]+, (4)

and then set

zi = [sign((aT
i x)2 − γ)]+a

T
i x, z∗ = z/‖z‖2.

7. Maximizing convex functions

Problems (2) and (4) (and their block generalizations) are of the
form

f ∗ = max
x∈Q

f(x), (P)

where

• E is a finite-dimensional vector space,

• f : E→ R is a convex function,

• Q ⊂ E is compact.

In particular,

• Q = unit Euclidean sphere in Rp / Single-unit case (m = 1)

• Q = Stiefel manifold in Rp×m, i.e. the set of p×m matrices
with orthonormal columns / Block case (m > 1)

How to solve (P)?

8. Gradient algorithm

We solve (P) using this simple gradient method:

1. Input: Initial iterate x0 ∈ Q
2. For k ≥ 0 repeat

• xk+1 ∈ Arg max{f(xk) + 〈f ′(xk), y − xk〉 | y ∈ Q}
• k ← k + 1

This algorithm generalizes the power method for computing the
largest eigenvalue of a symmetric positive definite matrix C:

f(x) = 1
2x

TCx → xk+1 =
Cxk

‖Cxk‖2
.

Hence “Generalized Power Method” (GPower).

9. Iteration complexity: basic result

At any point x ∈ Q we introduce a measure for the first-order
optimality conditions:

∆(x)
def
= max

y∈Q
〈f ′(x), y − x〉.

Clearly, ∆(x) ≥ 0 and it vanishes only at the points where the
gradient f ′(x) belongs to the normal cone to Conv(Q) at x.

Denote ∆k
def
= min

0≤i≤k
∆(xi).

Theorem Let sequence {xk}∞k=0 be generated by GPower as ap-
plied to a convex function f . Then the sequence {f(xk)}∞k=0 is
monotonically increasing and lim

k→∞
∆(xk) = 0. Moreover,

∆k ≤
f ∗ − f(x0)

k + 1
. (5)

10. Strong convexity of functions and sets

Function f is strongly convex if there exists a constant σf > 0
such that for any x, y ∈ E

f(y) ≥ f(x) + 〈f ′(x), y − x〉+
σf

2
‖y − x‖2.

The set Conv(Q) is strongly convex if there exists a constant
σQ > 0 such that for any x, y ∈ Conv(Q) and α ∈ [0, 1] the
following inclusion holds:

αx+ (1− α)y +
σQ
2
α(1− α)‖x− y‖2 · S ⊂ Conv(Q).

Theorem If f : E → R is nonnegative, has σf > 0 and f ′ is
Lf -Lipschitz, then for any ω > 0, the level set

Qω
def
= {x | f(x) ≤ ω}

is strongly convex with parameter σQω
= σf/

√
2ωLf .

11. Refined analysis under strong convexity

Theorem

Let

• f be convex with strong convexity parameter σf ≥ 0, and

• Conv(Q) be convex with strong convexity parameter σQ ≥ 0.

If 0 < δf = infx∈Q ‖f ′(x)‖∗ and either σf > 0 or σQ > 0, then

N∑
k=0

‖xk+1 − xk‖2 ≤
2(f ∗ − f(x0))

σQδf + σf
.

Note: If f is not minimized on Q, then δf > 0.

12. Computational experiments

We compare the following Sparse PCA algorithms:

GPower`1 Single-unit sparse PCA via `1-penalty [1]
GPower`0 Single-unit sparse PCA via `0-penalty [1]
GPower`1,m Block sparse PCA via `1-penalty [1]
GPower`0,m Block sparse PCA via `0-penalty [1]
SPCA SPCA algorithm [2]
Greedy∗ Greedy method [3]
rSVD`1 Method [4] with `1-penalty (“soft thresholding”)
rSVD`0 Method [4] with `0-penalty (“hard thresholding”)

∗Greedy slows down dramatically, compared to the other methods,
if aimed at obtaining a component of higher cardinality.

Test Problems:

• Randomly generated

A = Gaussian with zero mean and unit variance

• Gene-expression data

13. Trade-off curves

Trade-off between explained variance and cardinality. The
algorithms aggregate in two groups. The methods GPower`1,
GPower`0, Greedy and rSVD`0 do better (black solid lines), and
SPCA and rSVD`1 do worse (red dashed lines).

Based on 100 random test problems of size p = 100, n = 300.

14. Controlling sparsity with γ

Dependence of cardinality on the value of the sparsity-inducing
parameter γ. The horizontal axis shows a normalized interval
of reasonable values of γ. The vertical axis shows percentage of
nonzero coefficients of the resulting sparse loading vector z∗.

Based on 100 random test problems of size p = 100, n = 300.

15. How does the trade-off evolve in time?

Evolution of the explained variance (solid lines and left axis) and
cardinality (dashed lines and right axis) in time for the methods
GPower`1 and rSVD`1.

Based on random test problem of size p = 250 and n = 2500.

16. Random data: speed

Fixed n/p ratio:
p× n 250× 2500 500× 5000 750× 7500 1000× 10000
GPower`1 0.85 2.61 3.89 5.32
GPower`0 0.46 1.21 2.41 2.93
SPCA 2.77 14.0 41.0 81.6
rSVD`1 1.40 6.80 17.8 41.2
rSVD`0 1.33 6.20 15.4 36.3

Fixed p, growing n:
p× n 500× 2000 500× 4000 500× 8000 500× 16000
GPower`1 0.97 1.96 4.30 8.43
GPower`0 0.39 0.97 2.01 4.63
SPCA 7.37 11.4 22.4 44.6
rSVD`1 2.56 5.27 11.3 26.8
rSVD`0 2.30 4.70 10.3 23.8

17. Gene expression data: speed

Data sets (breast cancer cohorts):
Study Samples (p) Genes (n) Reference
Vijver 295 13319 van de Vijver et al. [2002]
Wang 285 14913 Wang et al. [2005]
Naderi 135 8278 Naderi et al. [2006]
JRH-2 101 14223 Sotiriou et al. [2006]

Speed (in seconds):
Vijver Wang Naderi JRH-2

GPower`1 7.72 6.96 2.15 2.69
GPower`0 3.80 4.07 1.33 1.73
GPower`1,m 5.40 4.37 1.77 1.14
GPower`0,m 5.61 7.21 2.25 1.47
SPCA 77.7 82.1 26.7 11.2
rSVD`1 46.4 49.3 13.8 15.7
rSVD`0 46.8 48.4 13.7 16.5

18. Gene expression data: content

PEI-values based on 536 cancer-related pathways:
Vijver Wang Naderi JRH-2

PCA 0.0728 0.0466 0.0149 0.0690
GPower`1 0.1493 0.1026 0.0728 0.1250
GPower`1 0.1250 0.1250 0.0672 0.1026
GPower`1,m 0.1418 0.1250 0.1026 0.1381
GPower`0,m 0.1362 0.1287 0.1007 0.1250
SPCA 0.1362 0.1007 0.0840 0.1007
rSVD`1 0.1213 0.1175 0.0914 0.0914
rSVD`0 0.1175 0.0970 0.0634 0.1063

Pathway Enrichment Index (PEI) measures the statistical significance of the
overlap between two kinds of gene sets.

19. Summary

We have

• developed 4 reformulations (single unit/block × `1/`0) of the
sPCA problem which enabled us to

– devise a very fast method (we work in dimension p � n
and use only gradients), and

– analyze the iteration complexity of the method;

• analyzed a simple gradient method (Generalized Power
Method) for maximizing convex functions on compact sets;

• applied GPower to 4 reformulations and ended-up with 4 algo-
rithms for sPCA;

• tested our algorithms on random and gene expression data:

– they outperform other methods significantly in speed
(finish before some other algorithms initialize),

– for the biological data, they produce slightly higher quality
of solution in terms of PEI.

20. References

[1] M. Journée, Yu. Nesterov, P. Richtárik, R. Sepulchre. Generalized Power

Method for Sparse Principal Component Analysis (this talk). submitted

to Journal of Machine Learning Research, November 2008.

[2] H. Zou, T. Hastie, R. Tibshirani. Sparse Principal Component Analysis.

Journal of Computational and Graphical Statistics, 15(2):265–286, 2006.

[3] A. d’Aspremont, F. R. Bach, L. El Ghaoui. Optimal Solutions for Sparse

Principal Component Analysis. Journal of Machine Learning Research,

9:1269–1294, 2008.

[4] H. Shen, J. Z. Huang. Sparse Principal Component Analysis via Regu-

larized Low Rank Matrix Approximation. Journal of Multivariate Analysis,

99(6):1015–1034, 2008.

	Outline
	Sparse PCA (sPCA)
	Our approach to sPCA
	Three observations about the 1 penalty
	Reformulation
	Single-unit sPCA via 0 penalty
	Maximizing convex functions
	Gradient algorithm
	Iteration complexity: basic result
	Strong convexity of functions and sets
	Refined analysis under strong convexity
	Computational experiments
	Trade-off curves
	Controlling sparsity with
	How does the trade-off evolve in time?
	Random data: speed
	Gene expression data: speed
	Gene expression data: content
	Summary
	References

