ICML | 2019

SGD: General Analysis and Improved Rates

Peter Richtárik

Coauthors

Robert Gower

Nicolas Loizou

Xun Qian

Egor Shulgin

Alibek Sailanbayev

Motivation 1: Remove Strong Assumptions on Stochastic Gradients

 We get rid of unreasonable assumptions on the 2nd moment / variance of stochastic gradients:

$$\mathbf{E} \|g^k - \nabla f(x^k)\|^2 \le \sigma^2$$

 $\mathrm{E} \|q^k\|^2 < \sigma^2$ Lan, Nemirovski, Juditsky, Shapiro 2009

Such assumptions may not hold even for unconstrained minimization of strongly convex functions

Nguyen et al (ICML 2018)

Nguyen et al (arXiv:1811.12403)

We do not need any assumptions!

Instead, we use expected smoothness assumption which follows from convexity and smoothness

Gower, Richtárik and Bach (arXiv:1706.01108)

Motivation 2: Develop SGD with Flexible Sampling Strategies

First analysis for SGD in the arbitrary sampling paradigm

(extends, simplifies and improves upon previous results)

Moulines & Bach (NIPS 2011)

Needell, Srebro and Ward (MAPR 2016)

Needell & Ward (2017)

Byproduct:

- First SGD analysis that recovers rate of GD in a special case
- First formula for optimal minibatch size for SGD
- Importance sampling for minibatch SGD

SGD Applied to Stochastic Reformulation

$$\min_{x \in \mathbb{R}^d} \mathbb{E}\left[f_v(x) \stackrel{ ext{def}}{=} rac{1}{n} \sum_{i=1}^n v_i f_i(x)
ight]$$
 sample $v^k \sim \mathcal{D}$ $x^{k+1} = x^k - \gamma^k
abla f_{v^k}(x^k)$

By varying \mathcal{D} , we obtain different existing and new variants of SGD We perform a general analysis for any distribution \mathcal{D}

Stochastic Reformulations of Deterministic Problems: Related Work

Linear systems / convex quadratic minimization

Richtárik and Takáč (arXiv:1706.01108)

Stochastic reformulations of linear systems: algorithms and convergence theory

Convex feasibility

PDF

Necoara, Patrascu and Richtárik (arXiv:1801.04873) Randomized projection methods for convex feasibility problems: conditioning and convergence rates

Variance reduction for finite-sum problems

PDF

Gower, Richtárik and Bach (arXiv:1706.01108) Stochastic quasi-gradient methods: variance reduction via Jacobian sketching

Example: Single Element Sampling

|S| = 1 with probability 1

$$\mathbf{S} = \begin{cases} \{1\} & \text{with probability} \quad p_1 \\ \{2\} & \text{with probability} \quad p_2 \\ & \vdots \\ \{n\} & \text{with probability} \quad p_n \end{cases}$$

$$\mathbf{SGD}$$

$$x^{k+1} = x^k - \gamma^k \frac{1}{np_{i^k}} \nabla f_{i^k}(x^k)$$

Importance Sampling for Minibatches

Details in: Paper

Richtárik and Takáč (Opt Let 2016)

Csiba and Richtárik (JMLR 2018)

Gower, Richtárik and Bach (arXiv:1805.02632)

Hanzely and Richtárik (AISTATS 2019)

Summary of Contributions

- 1. New conceptual tool: stochastic reformulation of finite-sum problems
- 2. First SGD analysis in the arbitrary sampling paradigm
- 3. Linear rate for smooth quasi-strongly functions to a neighborhood of the solution without the need for any noise assumptions!
- 4. First SGD analysis which recovers the rate for GD as a special case
- 5. First formulas for optimal minibatch size for SGD
- 6. First importance sampling for minibatches for SGD
- 7. A powerful learning schedule switching strategy with a sublinear rate
- 8. Tight extensions of previous results (Richárik-Takáč 2017, Viswani-Bach-Schmidt 2018)

#	Paper	Algorithm	Comment
1	R. & Takáč (OL 2016; arXiv 2013) On optimal probabilities in stochastic coordinate descent methods	NSync	Arbitrary sampling (AS) first introduced Analysis of coordinate descent under strong convexity
2	Qu, R. & Zhang (NeurIPS 2015) Quartz: Randomized dual coordinate ascent with arbitrary sampling	QUARTZ	First AS SGD method for min P Primal-dual stochastic fixed point method; variance reduced
3	Csiba & R. (arXiv 2015) Primal method for ERM with flexible mini-batching schemes and non-convex losses	Dual-free SDCA	First primal-only AS SGD method for min P Variance-reduced
4	Qu & R. (OMS 2016) Coordinate descent with arbitrary sampling I: algorithms and complexity	ALPHA	First accelerated coordinate descent method with AS Analysis for smooth convex functions
5	Qu & R. (OMS 2016) Coordinate descent with arbitrary sampling II: expected separable overapproximation		First dedicated study of ESO inequalities $\mathbf{E}_S \left[\left\ \sum_{i \in S} \mathbf{A}_i h_i \right\ ^2 \right] \leq \sum_{i=1}^n p_i v_i \ h_i\ ^2$ needed for analysis of AS methods
6	Chambolle, Ehrhardt, R. & Schoenlieb (SIOPT 2018) Stochastic primal-dual hybrid gradient algorithm with arbitrary sampling and imaging applications	SPDHGM	Chambolle-Pock method with AS
7	Hanzely, Mishchenko & R. (NeurIPS 2018) SEGA: Variance reduction via gradient sketching	SEGA	Variance-reduce coordinate descent with AS
8	Hanzely & R. (AISTATS 2019) Accelerated coordinate descent with arbitrary sampling and best rates for minibatches	ACD	First accelerated coordinate descent method with AS Analysis for smooth strongly convex functions Importance sampling for minibatches
9	Horváth & R. (ICML 2019) Nonconvex variance reduced optimization with arbitrary sampling	SARAH, SVRG, SAGA	First non-convex analysis of an AS method First optimal mini-batch sampling
10	Gower, Loizou, Qian, Sailanbayev, Shulgin & R. (ICML 2019) SGD: general analysis and improved rates	SGD-AS	First AS variant of SGD (without variance reduction) Optimal minibatch size
11	Qian, Qu & R. (ICML 2019) SAGA with arbitrary sampling	SAGA-AS	First AS variant of SAGA

