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The Problem: Empirical Risk Minimization

"

min f(x
r€R4

%




Motivation 1: Remove Strong
Assumptions on Stochastic Gradients

We get rid of unreasonable assumptions on the [such assumptions may not hold even

2"d moment / variance of stochastic gradients; o unconstrained minimization of
strongly convex functions

Ellgh — Vf(z")|? < o? [ Nguyen et al (ICML 2018) |
EHgk ”2 < 0'2 ’ Lan, Nemirovski, Juditsky, Shapiro 2009 ‘ I Nguyen et al (arXiv:1811.12403) |

We do not need any assumptions!

Instead, we use expected smoothness assumption

which follows from convexity and smoothness Gower, Richtark and Bach (arkiv:1706.01108) ‘

Motivation 2: Develop SGD with Flexible
Sampling Strategies

First analysis for SGD in the arbitrary sampling paradigm
(extends, simplifies and improves upon previous results)

| Moulines & Bach (NIPS 2011) | | Needell, Srebro and Ward (MAPR 2016) | | Needell & Ward (2017) |

Byproduct:
* First SGD analysis that recovers rate of GD in a special case
* First formula for optimal minibatch size for SGD
* Importance sampling for minibatch SGD
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Stochastic Reformulation

==

)déf%Zfl( ZEUZ fz - szfz
=1

Original Finite-Sum Problem Stochastic Reformulation

min Ef,(z)
i D5 _

Minimizing the expectation over random
linear combinations of the original functions
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SGD Applied to Stochastic Reformulation

n

. def 1
E |1 = — i Ji
min B f,(z) = ;:1 vi fi()

stepsize l sample v* ~ D

k)

By varying D, we obtain different existing and new variants of SGD

We perform a general analysis for any distribution D

Stochastic Reformulations of
Deterministic Problems: Related Work

Richtarik and Taka¢ (arXiv:1706.01108)
Stochastic reformulations of linear systems: algorithms
and convergence theory

Linear systems / convex quadratic minimization

>~

Necoara, Patrascu and Richtarik (arXiv:1801.04873)
Randomized projection methods for convex feasibility
problems: conditioning and convergence rates

o

Convex feasibility

Gower, Richtarik and Bach (arXiv:1706.01108)
Stochastic quasi-gradient methods: variance reduction
via Jacobian sketching

o

Variance reduction for finite-sum problems
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Sampling Without Replacement

L 4es
Sc{L2,..., » =9
=1 n ) 0 ¢S5

def
Randomset 7 = E|5]| Sampling vector

i & Prob(i € S) Efv] =1 ‘

Minibatch SGD Without Replacement J

2+ = ok — VL (o)

First time SGD is proposed and analyzed
in the arbitrary sampling paradigm E[Vf(z)] = Vf(z)
Richtarik and Taka¢ (arXiv:1310.3438; Opt Letters 2016) l

min ) S )

Example: Single Element Sampling

S| = 1 with probability 1
{1} with probability p; SGD
{2} with probability ps » phHl — gk ok 1 V £ (%)

{n} with probability p,

S:
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9 def 1 =~
féllﬂf(z) = ngfi(z)J

Sampling With Replacement
1 with probability ¢ 1 T
2 with probability ¢ » Ui = o Z ]‘(Stzi)

Cl L Ee -
n with probability ¢,

Sample several copies independently: S1,S89 ...,S5+

Minibatch SGD With Replacement ].
Vf v — Z - Vf St (513 )

2 = 2b — VS

T(s
t 1 s
See also Algorithm 3 in Gorbunov et al (arXiv:1905.11261) |
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Expected Smoothness

=

EIVF.@) = Vi @] <22 (f(@) = £ (2%))

Richtarik and Takac (1706.01108); Equation (30)

See also: Gower, Bach & Richtarik (1805.02632); Section 3

Bounding the 2" Moment

Nguyen et al (ICML 2018

Richtarik and Takac (1706.01108); Equation (30) Gorbunov et al (arXiv:1905.11261); Assumption 4.1
)
Vaswani, Bach and Schmidt (AISTATS 2019)
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Computation of Expected Smoothness

Expected Gradient Noise

Sampling (with Replacement)

Expected Smoothness

General
Random subset S C {1,2,.

- -

L=cL+ ma

, 1 P

i,j=1

2 £~ pip;

= (hi, hj)

J

Single Element
S = {i} with probability p;

2Z—Ilhll

'le

Independent Minibatch

=1

Siy.ee, S, are independent

Uniform Minibatch

S chosen uniformly random
from all subsets of size 7

n2Z

_1on

—pi
I724]*

12
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Ma i n Resu It (Linear Convergence to a Neighborhood of the Solution)

Assumption: f is p—quasi strongly convex Gradient noise:

76 2 £@) + (V@) =)+ b o — o o L[V, @]

Theorem (f, D)~ ES(L) »

E o - 2*[* < (1 - 3u)* e - o + 212

_I_—
0

*

4

Fixed stepsize: 7k =< % =0 - can choose v = %
Corollary ~-uwn{;. %}
e
2L 40° 2[|2° — o°||? Ellz" —a"|" < €
kzmax{—,—z}log —_
noEn €
)
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Optimal Minibatch Size |#iestion] qu—"

evaluations in 1 iteration
7 =E|S]|

X T

Computation of the Constants

=B kL Lk PP €S AL

L

@ (2HIU_$*”2) » EHI}C?I*HQS(
log || ==L
J

Optimal minibatches for
different methods:

n(r—1 n—r 1 n—71 2
| Quetal (ML 2016) | L= TEH—l;L+ D) max L; o2 = e > lIn]
i=1

] Bibi et al (arkiv:1806.05633) \
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Optimal Minibatch Size

f is p—quasi strongly convex fi is Li-smooth

1= )
Fal= - S IV Si)?
i=1

F@) 2 5(@) +(VF@), " )+ & et - o ] is L-smooth il
tolerance

2 202
min C(7) e 2 ax n(tr—1)L+ (n—7)maxL;, (n—7) T
1<7<n ,u(n — 1) 7 €L
\ ] | )
R | |

minibatch size C(T) increasing linear decreasing linear

9 L_Lmax
o+ )

0 +nL — Lyax
.............. > 0 — 202
T €L

Optimal Minibatch Size: LIBSVM data

n=4912,d =300, A\ = 100/n, e = 1073, 7 =n/5

0]
10 —@— singletons

— 10-11 —%— 7-ind
52 —4— 2633 = 7" - ind
ﬁ g 10-2] —4— T-nice
o = 5 2633 = 7" - nice
g w© s,

D wi 1074
5 =
W 3 -
9 © 10

10771 ¥

0 200 400 600 800 1000
Epoch number
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Optimal Minibatch Size: Synthetic Data

n=200,d=10, A=20/n,e=10"% 7 =n/10

0]
10 —@— singletons
—%— 7-ind
c 10-1 —— 192 = 7" - ind
o c
a ‘g —4— T-nice
go é 5 193 = 7* - nice
G =10
= w
5
o] 3
9 1073
1074
0 100 200 300 400 500

Epoch number

Importance Sampling for Minibatches

Details in: Paper

Richtark and Taka¢ (Opt Let 2016) \ ] Csiba and Richtarik (JMLR 2018) \ ] Gower, Richtarik and Bach (arXiv:1805.02632) \ ] Hanzely and Richtarik (AISTATS 2019)
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Learning Schedule: Constant & Decreasing

Theorem

1
kE__ ) 2cC
7= { 2k 41

(k+1)2p

Bl 4

2
E|lo* - 2| < =

(f,D) ~ ES(L)

for k < 4[L/u]
for k> 4[L/u

2
16 [£/ ] ||:1:0 _ x*H?

e M

e2k?
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Learning Schedule: Constant & Decreasing

Synthetic data Real data
o n = 1000, d = 400 n=4177,d =8
c = 10" 10
(=) "r’ [ synthetic —@— Constant step size —@— Constant step size
.a ‘3§ 107t —‘— Decreasing step size 10-1 —’- Decreasing step size
E | i —— Regime switch —— Regime switch
SR g
gln < i 5102
o s 10°°
T 107
‘=
= 0 25 50 75 100 125 150 175 200 0 10 20 30 40 50
Epoch number Epoch number
o n = 2000,d = 100 n =1605,d = 119
8
e = 100 X 10 .
o ‘JLN —@— Constant step size —@— Constant step size
.ﬁ § -’- Decreasing step size . + Decreasing step size
E <: 10-1 Regime switch 10 Regime switch
= = .
=T I g s
v = ] i
L) % 1072
g
S 2 10 )
B s . Regularizer
8 i parameter:
- A 0 25 50 75 100 125 150 175 200 0 25 50 K6 100 125 150 175 200
—= Epoch number Epoch number )\ — l
n
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Summary of Contributions

1. New conceptual tool: stochastic reformulation of finite-sum problems
2. First SGD analysis in the arbitrary sampling paradigm

Linear rate for smooth quasi-strongly functions to a neighborhood of the
solution without the need for any noise assumptions!

First SGD analysis which recovers the rate for GD as a special case

w

First formulas for optimal minibatch size for SGD
First importance sampling for minibatches for SGD
A powerful learning schedule switching strategy with a sublinear rate

Tight extensions of previous results (Richarik-Taka¢ 2017, Viswani-Bach-
Schmidt 2018)

© N O U b

8/3/19
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Arbitrary sampling (AS) first introduced

1 R. & Takac (OL 2016; arXiv 2013) NSync
On optimal ilities in stochastic coordi Analysis of coordinate descent under strong convexity
2 Qu, R. & Zhang (NeurlPS 2015) QUARTZ First AS SGD method for min P
Quartz: Randomized dual coordinate ascent with arbitrary sampling Primal-dual stochastic fixed point method; variance reduced
Csiba & R. (arXiv 2015 First primal-only AS SGD method for min P
3 Primal method for E(RM with flexible mi!i-bikhing schemes and non-convex losses Dual-free SDCA Variance-reduced
4 Qu & R. (OMS 2016) ALPHA First accelerated coordinate descent method with AS
Coordinate descent with arbitrary sampling I: algorithms and complexity Analysis for smooth convex functions
2 n
5 Qu & R. (OMS 2016) First dedicated study of ESO inequalities _ S Ad| | < polinal?
Coordinate descent with arbitrary sampling Il: expected separable overapproximation needed for analysis of AS methods ies i=1
6 Chambolle, Ehrhardt, R. & Schoenlieb (SIOPT 2018) SPDHGM Chambolle-Pock method with AS
Stochastic primal-dual hybrid gradient algorithm with arbitrary sampling and imaging applications
7 Hanzely, Mishchenko & R. (NeurlPS 2018) SEGA Variance-reduce coordinate descent with AS

SEGA: Variance reduction via gradient sketching

First accelerated coordinate descent method with AS
8 Hanzely &.R' (AISTATS 2019) ] - ACD Analysis for smooth strongly convex functions
Accelerated coordinate descent with arbitrary sampling and best rates for minibatches. ) I
Importance sampling for minibatches

9 Horvéath & R. (ICML 2019) SARAH, SVRG,  First non-convex analysis of an AS method
Nonconvex variance reduced optimization with arbitrary sampling SAGA First optimal mini-batch sampling

10  Gower, Loizou, Qian, Sailanbayev, Shulgin & R. (ICML 2019) SGD-AS First AS variant of SGD (without variance reduction)
SGD: general analysis and improved rates Optimal minibatch size

11 Qan, Qu&R.(ICML2019) SAGA-AS First AS variant of SAGA

SAGA with arbitrary sampling
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The Problem

é/.[z}] 0}

We sssume J; are differentiable and  is quasi strongly comvex

== ammin [I(r)

Stochastic Reformulation

Stochste reormuaton of (1) the probln
i Eep [/m‘: 15 use @
- 4) € R* (‘smpling vosior”) s any random
ectorfor which
Enplul=1, Vie{1,2...,n} &)

« Bquialenc: (2) i quivalnt o (1) snes By £ = J. Ao
note that Ev.p [V f,] = V1, which can be seen via
Eol91] 2 13 B o) VA = V1. )
«We propeestosle (1) by appying SGD to (2);
E =7V fula") (5)
where o ~ D is samplod L. and 7¥ > 0  tepsie

Example: Arbitrary Sampling
A sampiing is 2 random setvalued mapping S with values being
subsets of {1,..,n}. A sampling is defined by assigning
probabiltes to al 2° subsets of {1,....,n}.
« A sampling i proper i ps & Pfi € 5] > 0 for all i € {1,.... 7).
« Each proper sampling S givs iseto 3 samping vector v

Diag(pi",...7) Lei
where ;s the th standard unit basis vector i R It s essy to
see that E ;] = 1. Indeed, just notice that t, = p; " if i € S and.
w=0ifigS.

Main Contributions

*We introduce and study a lexble stochastic reormulation (see
(2)) of the inite-sum problem (1), and study SGD applied to this

reformulation (sce (5)). This way we obtain a wide array of
existing and ew variants of SGD for (1)
« We establish lincar convergence of SGD applied to the stochastic

reformulation. As a by-product, we cstablish lincar
of SGD under the ar ling paradigm [2

Our resilts require very weak assumptions. In particular, we do
ot assume bounded sccond moment of the gradients for every =
(only at 2* see (8)). We rely on the expected smoothness
assumption (7) 3,4,

convergence

size: We establish formulas for the optimal
opsize on the min-batch size

Optimal mini
dependence of the

 Learning schedle: We provide a formula for when SGD should
switch from & constant. stepsize to a decreasing stepsize (o (9)).
« Interpolated models. We extend the findings in 5]; and show

that optimal mini-batch size i 1 for independent sampling and
‘sampling with replacement

Assumptions

* Quasi strong convexity: / is quasi u-strongly convex [1]:
1@)2 f@) + (V@2 - 2)+ 5o -2l V2 (6)
* Expected Smoothness: There exists £ > 0 such
Evo [IV4e) - VAGI] < 260/(@) - S, ¥e. ()
As L depends on both f and D, we will write (f,D) ~ ES(L).
«Finite Gradient Noise
o ¥ B [IVAEIF] < 0]

Assumptions (7) and (8) include also some non-convex functions!

Linear Convergence with Fixed Step Size

Assumptions (7) and (8) lead to a bound on the 20d moment o the
stochastic gradient

Lemma: 2nd moment

16 (£,D) ~ ES(C) and < +30 (. i (7) and (8 hod), then
Evp [IVA@)IF] <4£0/() - 1) + 2%

The above lemma can now be used to establish a linear convergence.
result

Chocse 7"

El — ' < (1 - ) I~ =P +

€ (0,24], then SGD (5 satsfes:

20?
u
In paticular, with stepize = i {3, £}, we bave
max {2, 42 1 (2 z'n’) o <o
[ {u wz}bs( =Bl - <e

Proof. Let v+ £ 2~ 2* and * By [V ()]

e @ et - v
PP = 20(r%, V() + IV S
‘Taking expectation conditioned on z* we obtain:
[0)
© 2 £ (2 e
< (=Wl -1l - @) + 7
Tking expectations agan and using the emma.

Bl < (LBl + 2070
(e VE[f) - 1]
< (=B + 200

since 29£ < 1and 7 < . Recursively applying the above and
summing up the resulting gometric srics

EIr1? < (1 - 12+ 23 (1 v

Eulrt 1 et - 20, O () + o

2, 20

n

< (-t pe!

Example: M i-batch SGD Without
Replacement (7-nice sampling)
amamaes
 Consider sampling S which picks from all subsets of {1,...., 1} of i Pap—
caninalty 7, unomaly at random. Then gy = & for 3l  and the . b St vl
campling vcta v s gien by . =t
w-? €S N g
N 0 otherwise. 1 T .
450D ) hen e the o e
o B . T
# =t - Y VA R - —
ar @~ Decreasing step size
1 each f,is Li-smooth and conve, Ly max, L, and f N e S
L-smooth, then (f, D) ~ ES(L), where S L A
& MY, s e,
£<E0) S eyt - - Biiia et S
eLeth = L5, |V £i(z")|. Then the gradient noise is L -
gy € 1=7 Constant vs doceasing tep s rogines of SGD with A = 1/
= =7 Top: Ridge regremsion problem with abalone. Botiom: Logistic
= Appying Theorem 1, regression it ata. Data from LIBSVM.
2An—1) n(r— 1)L Luw 2h° 2|2 — =* |
k2™ Unr a5 < PCA (Sum-of-non-convex functions)
implies Ejlz* — 2| < e.
« Theoretically optimal mini-batch size is obtained by minimizing . sl -0
the above bound on k in ' T =

Sublinear Convergence with Constant and Top: C
Later Decreasing Step Size of SGD for PCA. Bottom: Comparison of diferent sampling strate-
T s of SGD for PCA.
In the next theorem we propase a stepize switching strateay: first
tant stepeize, and at some point switch to O(1/) stepsice. References

This leads to O(1/K) rate.

e —

Theorem 2

Let K% £/pand O i i i ot d .
2 G k4] S ————
et © i i i i i,
T o 3 1 i Gumgi, et Mo G, s o S,

16k > 4]K], then SGD iterates given by (5 satisy: 3 bl oo o

L e e oot i SGD

Bl TS G s febonelet e
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