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Part 1: Introduction

6 / 123



What is This Course About?

I A short introductory course (4 × 90 mins)

I Focus on the problem

min
x∈Rd

f (x) + R(x),

where f has a complicated structure related to training supervised
machine learning models.

I We will cover a bit deeply rather than a lot superficially
I Should feel like a normal PhD level course
I This is not a tutorial; we’ll do proofs
I Slow pace
I I expect interruptions/questions!
I There are no stupid questions; except for those you do not ask!

I Prepares you for further study and research

I Slides are on https://richtarik.org
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Key Principles Covered

We will focus on understanding selected key principles related to
stochastic gradient descent (SGD)

I convergence

I importance sampling

I minibatching

I variance reduction

I compression/quantization

using a novel unified view [5] which arose as a synthesis of a large body
of research over the last few years
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What is Excluded?

I Non-convex problems (e.g., neural networks)

I Non-smooth problems

I Acceleration / momentum (i.e., optimal methods)

I Higher order and zero-order methods

I Non-Euclidean structure (e.g., methods based on Bregman
divergence)

I Dual problem and dual methods
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Structure of Optimization Problems Arising in
Training Supervised Machine Learning Models
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Optimization Problems Arising in Machine Learning
In this course, we are interested in the optimization problem

min
x∈Rd

f (x) + R(x). (1)

Typical structure of f :
I Infinite sum

f (x) = Eξ∼D [fξ(x)] , (2)

I Finite sum:

f (x) =
1

n

n∑
i=1

fi (x). (3)

I Finite Sum of Finite Sums:

fi (x) =
1

m

m∑
j=1

fij(x), (4)

These problems are of key importance in supervised learning theory
and practice.
Common feature: It is prohibitively expensive to compute the gradient
of f , while an unbiased estimator of the gradient can be computed
efficiently/cheaply.
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Stochastic Optimization and Machine Learning

In the stochastic optimization problem

f (x) = Eξ∼D [fξ(x)]

I x represents a machine learning model described by d
parameters/features (e.g., logistic regression or a deep neural
network),

I D is an unknown distribution of labelled examples,

I fξ(x) represents the loss of model x on data point ξ, and

I f is the generalization error.

Problem (1) seeks to find the model x minimizing the generalization
error.

I In statistical learning theory one assumes that while D is not known,
samples ξ ∼ D are available.

I In such a case, ∇f (x) is not computable, while ∇fξ(x), which is an
unbiased estimator of the gradient of f at x , is easily computable.
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Finite Sum Problems

In this course we will focus on functions f which arise as averages of a
very large number of (smooth) functions:

f (x) =
1

n

n∑
i=1

fi (x).

I This problem often arises by approximation of the stochastic
optimization loss function (2) via Monte Carlo integration.

I Known as the empirical risk minimization (ERM) problem.

I ERM is currently the dominant paradigm for solving supervised
learning problems [25].

I If index i is chosen uniformly at random from [n]
def
= {1, 2, . . . , n},

∇fi (x) is an unbiased estimator of ∇f (x).

I Typically, ∇fi (x) is about n times less expensive to compute than
∇f (x).
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Distributed Training

In distributed training of supervised models, one considers the finite sum
problem (3), with n being the number of machines, and each fi
I also having a finite sum structure, i.e.,

fi (x) =
1

m

m∑
j=1

fij(x), (5)

where m corresponds to the number of training examples stored on
machine i .

I or an infinite-sum structure, i.e.,

fi (x) = Eξi∼Di [fiξi (x)] , (6)

where Di is the distribution of data stored on machine i .
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Stochastic Gradient Descent (SGD)
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SGD

Stochastic gradient descent (SGD) [23, 18, 27] is a state-of-the-art
algorithmic paradigm for solving optimization problems (1) in situations
when f is either of structure (2) or (3).

In its generic form, (proximal) SGD defines the new iterate by subtracting
a multiple of a stochastic gradient from the current iterate, and
subsequently applying the proximal operator of R:

xk+1 = proxγR(xk − γgk) (7)

I gk is an unbiased estimator of the gradient (i.e., a “stochastic
gradient”):

E
[
gk | xk

]
= ∇f (xk). (8)

I

proxR(x)
def
= argmin

u

{
R(u) +

1

2
‖u − x‖2

}
.
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The Prox Operator

Some facts about the prox operator1:

I single-valuedness: x 7→ proxR(x) is a function

I non-expansiveness:

‖proxR(x)− proxR(y)‖ ≤ ‖x − y‖ , ∀x , y ∈ Rd

I Moreau decomposition:

proxR(x) + proxR∗(x) = x , ∀x ∈ Rd

Here R∗ is the Fenchel conjugate2 of R.

1Assume R : Rd → R ∪ {+∞} is proper, closed and convex.
2R∗(x)

def
= supy∈Rd {〈x , y〉 − R(y)}
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Prox Calculus (Beck’s 2017 book [3])
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Prox Computations (Beck’s 2017 book [3])
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Stochastic Gradient

There are infinitely many ways of obtaining a random vector gk

satisfying (8).

I Pros: flexibility to construct stochastic gradients in various ways
based on problem structure, and in order to target desirable
properties such as
I convergence speed,
I iteration cost,
I overall complexity,
I parallelizability,
I suitability for given computing architecture,
I communication cost,
I generalization properties.

I Cons: A crazy ZOO of methods.
I Hard to get into the field, hard to keep up with new results
I Considerable challenges in terms of convergence analysis. Indeed,

if one aims to, as one should, obtain the sharpest bounds possible,
dedicated analyses are needed to handle each of the particular
variants of SGD.
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A Guided Walk Through the ZOO of
Stochastic Gradient Descent Methods

Peter Richtárik

Part 2: General Analysis of SGD

Based on:

[5] E. Gorbunov, F. Hanzely and P.R., A Unified Theory of SGD: Variance
Reduction, Sampling, Quantization and Coordinate Descent, arXiv:1905.11261, 2019
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The Plan

I We first introduce the key (weak and powerful) assumption on
the stochastic gradients gk enabling our general analysis
(Assumption 1),

I then state our assumptions on f (Assumption 4),

I and finally state and comment on a unified convergence result
(Theorem 2).
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Key Assumption on the Stochastic Gradients
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Notation

I 〈x , y〉 def
=
∑

i xiyi is the standard Euclidean inner product

I ‖x‖ def
= 〈x , x〉1/2 is the Euclidean norm

I By Df (x , y) we denote the Bregman divergence associated with f :

Df (x , y)
def
= f (x)− f (y)− 〈∇f (y), x − y〉

I [n]
def
= {1, 2, . . . , n}.
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Modelling the Evolution of the Stochastic Gradients

We now introduce an assumption on the stochastic gradients {gk}k≥0

generated by SGD.

Assumption 1 (Gorbunov, Hanzely & R 2019 [5])
Let {xk}k≥0 be the random iterates produced by SGD.

1. Unbiasedness: We first assume that the stochastic gradients gk are
unbiased, i.e.,

E
[
gk | xk

]
= ∇f (xk), ∀k ≥ 0. (9)

2. Two recursions bounding evolution of the stochastic gradients:
Further, we assume that there exist non-negative constants
A,B,C ,D1,D2, ρ and a (possibly) random sequence {σ2

k}k≥0 such
that the following two relations hold:

E
[∥∥gk −∇f (x∗)

∥∥2 | xk
]
≤ 2ADf (xk , x∗) + Bσ2

k + D1, (10)

E
[
σ2
k+1 | σ2

k

]
≤ (1− ρ)σ2

k + 2CDf (xk , x∗) + D2, (11)
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First Comments About Assumption 1
I The expectation is with respect to the randomness of the algorithm

(note that xk , gk and possibly σ2
k are random).

I The parameters in the two recursions offer the flexibility to model
many SGD methods.

I We will only consider unbiased estimators; see (9).
I Virtually all known methods utilize unbiased estimators.
I Convergence analysis is easier.

I The world of SGD methods utilizing biased estimators (i.e., gk not
satisfying (9)) is small at the moment; and not very well
understood. Examples:
I the SAG method of Schmidt, Le Roux and Bach [24].
I the SARAH method of Nguyen et al [20].
I the STP method of Bergou, Gorbunov and R [4]

I Optimistic view: The ideal situation is to have xk = x∗ and
gk = ∇f (x∗). In this case, we can choose A = B = D1 = 0 in the
first recursion. Note that then

xk+1 = proxγR(xk − γ∇f (xk)) = xk
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Variance-reduced Methods

Definition 1 (Variance-reduced methods)
We say that SGD with stochastic gradients satisfying Assumption 1 is
variance reduced if D1 = D2 = 0.

I This is the first quantitative definition of a what it means for
an SGD method to be variance-reduced.

I We shall see (Theorem 2) that variance-reduced methods
converge to the solution, i.e., xk → x∗, whereas non-variance
reduced methods only converge to a neighbourhood of the
solution.

I Meaning of {σ2
k}k≥0: the sequence encodes the progress of the

variance-reduction process employed.
I If no variance reduction process is employed, then one has σk ≡ 0. In

this case, one can set the parameters B, ρ,C and D2 as follows:

B = 0, ρ = 1, C = 0, D2 = 0. (12)

This eliminates the second recursion, which is not necessary.
I For instance, GD and simple variants of SGD (with uniform sampling,

importance sampling, and various minibatching techniques) are in
this category.
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GD Satisfies Assumption 1

Assumption 2
f is convex, i.e.,

Df (x , y) ≥ 0, ∀x , y ∈ Rd

and L-smooth, i.e.,

‖∇f (x)−∇f (y)‖ ≤ L ‖x − y‖ , ∀x , y ∈ Rd .

These conditions imply that3 (see Nesterov’s book [19])

‖∇f (x)−∇f (y)‖2 ≤ 2LDf (x , y), ∀x , y ∈ Rd . (13)

Hence, if f satisfies Assumption 2, then gradient descent satisfies
Assumption 1 with

A = L, B = 0, D1 = 0, σk = 0, ρ = 1, C = 0, D2 = 0. (14)

3Hence, Df can be used as a measure of proximity for the gradients.
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Analysis of SGD under Assumption 1
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Generic SGD Method

Having introduced Assumption 1, let us again write down the format of a
generic SGD method for solving problem (1) (i.e., min f + R) satisfying
this assumption.

Algorithm 1 Generic SGD method

1: Parameters: learning rate γ > 0, starting point x0 ∈ Rd

2: for k = 0, 1, 2, . . . do
3: Construct stochastic gradient gk satisfying Assumption 1
4: xk+1 = proxγR(xk − γgk)
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Strong Convexity of f (in a relaxed form)

Assumption 3 (Unique solution)
For simplicity we assume that (1) has a unique minimizer, which we
denote x∗.

Remark: The uniqueness assumption can be lifted, but we will not do
this.

Assumption 4 (µ-strong quasi-convexity)
There exists µ > 0 such that f : Rd → R is µ-strongly quasi-convex.
That is, the following inequality holds:

f (x∗) ≥ f (x) + 〈∇f (x), x∗ − x〉+
µ

2
‖x∗ − x‖2

, ∀x ∈ Rd . (15)
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Main Result
Theorem 2 (Gorbunov, Hanzely & R 2019 [5])
Let Assumptions 1, 3 and 4 be satisfied. Choose constant M such that
M > B

ρ . Choose a stepsize satisfying

0 < γ ≤ min

{
1

µ
,

1

A + CM

}
. (16)

Then the iterates {xk}k≥0 of SGD (Algorithm 1; see also (7)) satisfy

E
[
V k
]
≤ max

{
(1− γµ)k ,

(
1 +

B

M
− ρ
)k
}
V 0 +

(D1 + MD2)γ2

min
{
γµ, ρ− B

M

} ,
(17)

where the Lyapunov function V k is defined by

V k def
=
∥∥xk − x∗

∥∥2
+ Mγ2σ2

k . (18)

Meaning: Linear convergence rate for a wide range of SGD methods
up to a certain oscillation radius, controlled by the additive term in
(17), and namely, by parameters D1 and D2.
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Table: Special Cases

33 / 123

Table: Parameters
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Sanity Check: Gradient Descent

35 / 123

Proximal Gradient Descent: The Algorithm

Algorithm 2 GD

1: Parameters: learning rate γ > 0, starting point x0 ∈ Rd

2: for k = 0, 1, 2, . . . do
3: Set gk = ∇f (xk)
4: xk+1 = proxγR(xk − γgk)
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Recovering the Rate of Gradient Descent from Theorem 2

In view of (14) which says that GD satisfies Assumption 1 with

A = L, B = 0, D1 = 0, σk = 0, ρ = 1, C = 0, D2 = 0,

Theorem 2 (we can choose M = 1) yields the following for gradient
descent:

I Stepsize is restricted to 0 < γ ≤ 1
L (since µ ≤ L and C = 0)

I The Lyapunov function is V k =
∥∥xk − x∗

∥∥2
(since σ2

k ≡ 0)

I The rate is
∥∥xk − x∗

∥∥2 ≤ (1− γµ)k
∥∥x0 − x∗

∥∥2
.

I So, for the largest allowable stepsize γ = 1
L , we recover the typical

linear rate of gradient descent. This can be alternatively written
as follows:

k ≥ L

µ
log

1

ε
⇒

∥∥xk − x∗
∥∥2 ≤ ε

∥∥x0 − x∗
∥∥2
.
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Complexity of GD

Let us formalize the above observations.

Corollary 3
Assume that

I f is convex and L-smooth (Assumption 2)

I The problem min f + R has a unique solution (Assumption 3)

I f is µ-quasi strongly convex (Assumption 4)

Then GD with stepsize 0 < γ ≤ 1
L satisfies∥∥xk − x∗

∥∥2 ≤ (1− γµ)k
∥∥x0 − x∗

∥∥2
. (19)
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Proof of Theorem 2
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Basic Facts and Inequalities I

For all a, b ∈ Rd and t > 0 the following inequalities holds:

〈a, b〉 ≤ ‖a‖
2

2t
+

t ‖b‖2

2
, (20)

‖a + b‖2 ≤ 2 ‖a‖2 + 2 ‖b‖2
, (21)

and
1

2
‖a‖2 − ‖b‖2 ≤ ‖a + b‖2

. (22)

For a random vector ξ ∈ Rd and any x ∈ Rd the variance can be
decomposed as

E
[
‖ξ − E [ξ]‖2

]
= E

[
‖ξ − x‖2

]
− E

[
‖E [ξ]− x‖2

]
. (23)
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A Key Lemma I

The following lemma will be used in the proof of our main theorem.

Lemma 4 (Key single iteration recurrence)
Let Assumptions 1–4 be satisfied. Then the following inequality holds for
all k ≥ 0:

E
[∥∥xk+1 − x∗

∥∥2
]

+ Mγ2E
[
σ2
k+1

]
+ 2γ (1− γ(A + CM)) E

[
Df (xk , x∗)

]
≤ (1− γµ)E

[∥∥xk − x∗
∥∥2
]

+ (1− ρ)Mγ2E
[
σ2
k

]
+Bγ2E

[
σ2
k

]
+ (D1 + MD2)γ2.
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Proof of Theorem 2
Note first that due to the stepsize restriction (16) we have

2γ (1− γ(A + CM)) E
[
Df (xk , x∗)

]
> 0,

thus we can omit the term.

Unrolling the recurrence from Lemma 4 and using the Lyapunov function notation
gives us

E
[
V k
]
≤ max

{
(1− γµ)k ,

(
1 +

B

M
− ρ
)k
}

V 0

+(D1 + MD2)γ2
k−1∑
l=0

max

{
(1− γµ)l ,

(
1 +

B

M
− ρ
)l
}

≤ max

{
(1− γµ)k ,

(
1 +

B

M
− ρ
)k
}

V 0

+(D1 + MD2)γ2
∞∑
l=0

max

{
(1− γµ)l ,

(
1 +

B

M
− ρ
)l
}

≤ max

{
(1− γµ)k ,

(
1 +

B

M
− ρ
)k
}

V 0 +
(D1 + MD2)γ2

min
{
γµ, ρ− B

M

} .
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Proof of Lemma 4 I

We start with estimating the first term of the Lyapunov function. Let rk
def
= xk − x∗.

Then ∥∥∥rk+1
∥∥∥2

=
∥∥∥proxγR(xk − γgk )− proxγR(x∗ − γ∇f (x∗))

∥∥∥2

≤
∥∥∥xk − x∗ − γ(gk −∇f (x∗))

∥∥∥2

=
∥∥∥rk∥∥∥2

− 2γ〈rk , gk −∇f (x∗)〉+ γ2
∥∥∥gk −∇f (x∗)

∥∥∥2
,

where in the inequality we used non-expansiveness of the prox. Taking expectation
conditioned on xk we get

E

[∥∥∥rk+1
∥∥∥2
| xk

]
=

∥∥∥rk∥∥∥2
− 2γ〈rk ,∇f (xk )−∇f (x∗)〉+ γ2E

[∥∥∥gk −∇f (x∗)
∥∥∥2
| xk

]
(15)

≤ (1− γµ)
∥∥∥rk∥∥∥2

− 2γDf (xk , x∗) + γ2E

[∥∥∥gk −∇f (x∗)
∥∥∥2
| xk

]
(9)+(10)

≤ (1− γµ)
∥∥∥rk∥∥∥2

+ 2γ (Aγ − 1)Df (xk , x∗) + Bγ2σ2
k + γ2D1,

where (15) is µ-strong quasi convexity of f , (9) is unbiasedness of gk and (10) is the
first recursion assumed to hold for gk .
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Proof of Lemma 4 II

Using this we estimate the full expectation of V k+1 by applying recursion (11)
involving σ2

k :

E

[∥∥∥xk+1 − x∗
∥∥∥2
]

+ Mγ2E
[
σ2
k+1

]
(11)

≤ (1− γµ)E

[∥∥∥xk − x∗
∥∥∥2
]

+ 2γ (Aγ − 1)Df (xk , x∗) + Bγ2E
[
σ2
k

]
+(1− ρ)Mγ2E

[
σ2
k

]
+ 2CMγ2E

[
Df (xk , x∗)

]
+ (D1 + MD2)γ2

= (1− γµ)E

[∥∥∥xk − x∗
∥∥∥2
]

+

(
1 +

B

M
− ρ
)
Mγ2E

[
σ2
k

]
+2γ (γ(A + CM)− 1) E

[
Df (xk , x∗)

]
+ (D1 + MD2)γ2 .

It remains to rearrange the terms.
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A Guided Walk Through the ZOO of
Stochastic Gradient Descent Methods

Peter Richtárik

Part 4: SGD with Uniform Sampling

Based on:

[7] R.M. Gower, N. Loizou, X. Qian, A. Sailanbayev, E. Shulgin, and P.R.
SGD: General Analysis and Improved Rates, ICML 2019
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The Plan

We now consider the regularized finite-sum problem

min
x∈Rd

1

n

n∑
i=1

fi (x)︸ ︷︷ ︸
f (x)

+R(x). (24)

That is, we consider problem (1) with f being of structure (3) .

I We consider the simplest variant of SGD, i.e., one using the
estimator

gk = ∇fi (xk),

where i is chosen uniformly at random at iteration k .

I So, D is the uniform distribution over {1, 2, . . . , n}.
I We will analyze it using Theorem 2.
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SGD-US: the Algorithm

For the record, here is the formal algorithm:

Algorithm 3 SGD-US

1: Parameters: learning rate γ > 0, starting point x0 ∈ Rd

2: for k = 0, 1, 2, . . . do
3: Sample ik = i ∈ {1, 2, . . . , n} with probability 1

n
4: gk = ∇fi (xk) obtain a stochastic gradient
5: xk+1 = proxγR(xk − γgk)
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Average Smoothness: The Right Smoothness Notion for
SGD-US

I Recall that in the case of GD, verification of the key assumption
(Assumption 1) on stochastic gradients relied on inequality (13), i.e.,

‖∇f (x)−∇f (y)‖2 ≤ 2LDf (x , y), ∀x , y ∈ Rd ,

which was simply a consequence of convexity and L-smoothness of f .
I In the proof of the main convergence result (Theorem 2) we only

used this inequality for y = x∗, i.e., in the form

‖∇f (x)−∇f (x∗)‖2 ≤ 2LDf (x , x∗), ∀x ∈ Rd ,

I What is the correct notion of smoothness for SGD-US?

Definition 5 (Average smoothness)
We say that f = 1

n

∑
i fi is L-smooth on average (i.e., with respect to

D) if there exists L > 0 such that

1

n

n∑
i=1

‖∇fi (x)−∇fi (x∗)‖2 ≤ 2LDf (x , x∗), ∀x ∈ Rd . (25)

For simplicity, we will write (f ,D) ∼ AS(L) to say that (36) holds.
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Computing the Average Smoothness Constant I

Assumption 5
Each fi is convex and Li -smooth.

Let Lmax
def
= maxi Li .

Under Assumption 6, the following hold:

I f = 1
n

∑
i fi is L-smooth, and L ≤ 1

n

∑
i Li .

I

0 ≤ Dfi (x , y) ≤ Li
2
‖x − y‖2

, ∀x , y ∈ Rd . (26)

I

‖∇fi (x)−∇fi (y)‖2 ≤ 2LiDfi (x , y), ∀x , y ∈ Rd . (27)

(compare this with (13))
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Computing the Average Smoothness Constant II

We will now use (27) to compute the average smoothness constant L.

Lemma 6
Let Assumption 6 hold (convexity and Li smoothness of fi ). The average
smoothness constant of f = 1

n

∑
i fi is L = Lmax.

Proof.
Fix any x , y ∈ Rd . Then

1

n

n∑
i=1

‖∇fi (x)−∇fi (y)‖2
(27)

≤
1

n

n∑
i=1

2LiDfi (x , y)

≤ 2

(
max

i
Li

)
1

n

n∑
i=1

Dfi (x , y)

= 2LmaxDf (x , y). (28)

It remains to compare this with (36).
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Satisfying Assumption 1
We now show that SGD-US satisfies Assumption 1

for the following choice of parameters:

A = 2Lmax, B = 0, D1 = σ2, σ2
k = 0, ρ = 1, C = 0, D2 = 0. (29)

Lemma 7 (Gorbunov, Hanzely and R 2019 [5])
Let Assumption 6 hold. Then

1

n

n∑
i=1

‖∇fi (x)−∇f (x∗)‖2 ≤ 4LmaxDf (x , x∗) + 2σ2. (30)

where

σ2 def
=

1

n

n∑
i=1

‖∇fi (x∗)−∇f (x∗)‖2 (31)

is the variance of the stochastic gradients at the optimum.

Remark: Lemma 7 is a generalization of in Gower et al 2019 [7,
Lemma 2.4], who considered the R ≡ 0 case.
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Proof of Lemma 7

Expectations are with respect to the random choice of i : chosen uniformly at random
from {1, 2, . . . , n}. Then

1

n

n∑
i=1

‖∇fi (x)−∇f (x∗)‖2 =
1

n

n∑
i=1

‖∇fi (x)−∇fi (x∗) +∇fi (x∗)−∇f (x∗)‖2

(21)

≤
1

n

n∑
i=1

(
2 ‖∇fi (x)−∇fi (x∗)‖2 + 2 ‖∇fi (x∗)−∇f (x∗)‖2

)
(28)+(31)

≤ 4LmaxDf (x , x∗) + 2σ2.
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Complexity of SGD-US

A direct consequence of Theorem 2:

Corollary 8
Assume that

I The problem min f + R has a unique solution (Assumption 3)

I f is µ-quasi strongly convex (Assumption 4)

I fi are convex and Li -smooth (Assumption 6)

Then SGD-US with stepsize 0 < γ ≤ 1
2 maxi Li

satisfies

E
[∥∥xk − x∗

∥∥2
]
≤ (1− γµ)k

∥∥x0 − x∗
∥∥2

+
2γσ2

µ
. (32)
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Exercises

Both exercises below consider the σ2 = 0 case. In this case, SGD-US is a
variance-reduced method (see Def 1).

Exercise 1
Prove that if σ2 = 0 (i.e., if ∇fi (x∗) = ∇fj(x∗) for all i , j), then the
upper bound in (30) can be improved by a factor of 2:

1

n

n∑
i=1

‖∇fi (x)−∇f (x∗)‖2 ≤ 2LmaxDf (x , x∗). (33)

Exercise 2
Show that if σ2 = 0, then Corollary 8 has the following stronger form:
SGD-US allows for the larger stepsize 0 < γ ≤ 1

maxi Li
, and satisfies

E
[∥∥xk − x∗

∥∥2
]
≤ (1− γµ)k

∥∥x0 − x∗
∥∥2
. (34)
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Comparing GD and SGD-US in the σ2 = 0 Case
Let us compare the convergence of GD and SGD-US:
I GD

I By Corollary 3, using stepsize γ = 1
L

, GD achieves iteration complexity

k ≥ L

µ
log

1

ε
⇒

∥∥∥xk − x∗
∥∥∥2

≤ ε
∥∥∥x0 − x∗

∥∥∥2

I Cost of 1 iteration: n gradient evaluations

I Total complexity: Õ
(

nL
µ

)
I SGD-US

I By Corollary 8, using stepsize γ = 1
Lmax

, SGD-US achieves iteration
complexity

k ≥ Lmax

µ
log

1

ε
⇒ E

[∥∥∥xk − x∗
∥∥∥2
]
≤ ε

∥∥∥x0 − x∗
∥∥∥2

I Cost of 1 iteration: 1 gradient evaluation

I Total complexity: Õ
(

Lmax
µ

)
Conclusion: Note that nL ≤

∑n
i=1 Li ≤ nLmax, and this inequality can

be tight, so that L = Lmax. So, SGD-US can be as much as n times
faster than GD! However, it could also be worse since it’s possible
for nL ≤ Lmax to hold.
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A Guided Walk Through the ZOO of
Stochastic Gradient Descent Methods

Peter Richtárik

Part 5: SGD with Nonuniform Sampling

Based on:

[7] R.M. Gower, N. Loizou, X. Qian, A. Sailanbayev, E. Shulgin, and P.R.
SGD: General Analysis and Improved Rates, ICML 2019

[29] P. Zhao and T. Zhang, Stochastic optimization with importance sampling for
regularized loss minimization, ICML 2015
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The Plan

Recall we consider the regularized finite-sum problem

min
x∈Rd

1

n

n∑
i=1

fi (x)︸ ︷︷ ︸
f (x)

+R(x). (35)

I We now consider the a non-uniform sampling variant of SGD, i.e.,
one using the estimator

gk =
∇fi (xk)

npi
,

where i is chosen with probability pi > 0 at iteration k.

I So, D is this non-uniform distribution over {1, 2, . . . , n}.
I As before, we will analyze it using Theorem 2.
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SGD-NS: the Algorithm

For the record, here is the formal algorithm:

Algorithm 4 SGD-NS

1: Parameters: learning rate γ > 0, starting point x0 ∈ Rd , probabilities
p1, . . . , pn summing up to one

2: for k = 0, 1, 2, . . . do
3: Sample ik = i ∈ {1, 2, . . . , n} with probability pi > 0

4: gk = ∇fi (x
k )

npi
obtain a stochastic gradient

5: xk+1 = proxγR(xk − γgk)
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Weighted Smoothness: the Right Smoothness Notion for
SGD-NS

I Recall that in the case of GD, verification of the key assumption
(Assumption 1) on stochastic gradients relied on inequality (13), i.e.,

‖∇f (x)−∇f (y)‖2 ≤ 2LDf (x , y), ∀x , y ∈ Rd ,

which was simply a consequence of convexity and L-smoothness of f .
I In the proof of the main convergence result (Theorem 2) we only

used this inequality for y = x∗, i.e., in the form

‖∇f (x)−∇f (x∗)‖2 ≤ 2LDf (x , x∗), ∀x ∈ Rd ,

I What is the correct notion of smoothness for SGD-NS?

Definition 9 (Weighted smoothness)
We say that f = 1

n

∑
i fi is L-smooth with respect to weights p1, . . . , pn

(i.e., with respect to D) if there exists L > 0 such that

n∑
i=1

pi

∥∥∥∥∇fi (x)

npi
− ∇fi (x

∗)

npi

∥∥∥∥2

≤ 2LDf (x , x∗), ∀x ∈ Rd . (36)

For simplicity, we will write (f ,D) ∼WS(L) to say that (36) holds.
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Computing the Weighted Smoothness Constant I

Assumption 6
Each fi is convex and Li -smooth.

Let Lmax
def
= maxi Li .

Under Assumption 6, the following hold:

I f = 1
n

∑
i fi is L-smooth, and L ≤ 1

n

∑
i Li .

I

0 ≤ Dfi (x , y) ≤ Li
2
‖x − y‖2

, ∀x , y ∈ Rd . (37)

I

‖∇fi (x)−∇fi (y)‖2 ≤ 2LiDfi (x , y), ∀x , y ∈ Rd . (38)

(compare this with (13))
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Computing the Weighted Smoothness Constant II

We will now use (27) to compute the weighted smoothness constant L.

Lemma 10
Let Assumption 6 hold (convexity and Li smoothness of fi ). The
weighted smoothness constant of f = 1

n

∑
i fi is L = maxi

Li

npi
.

Proof.
Fix any x , y ∈ Rd . Then

n∑
i=1

pi

∥∥∥∥∇fi (x)

npi
−
∇fi (y)

npi

∥∥∥∥2

=
1

n

n∑
i=1

1

npi
‖∇fi (x)−∇fi (y)‖2 (39)

(27)

≤
1

n

n∑
i=1

1

npi
2LiDfi (x , y)

≤ 2

(
max

i

Li

npi

)
1

n

n∑
i=1

Dfi (x , y)

= 2

(
max

i

Li

npi

)
Df (x , y). (40)

It remains to compare this with (36).
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Satisfying Assumption 1
We now show that SGD-NS satisfies Assumption 1

for the following choice of parameters:

A = 2L, B = 0, D1 = σ2, σ2
k = 0, ρ = 1, C = 0, D2 = 0. (41)

Lemma 11 (Gorbunov, Hanzely and R 2019 [5])
Let Assumption 6 hold. Then

n∑
i=1

pi

∥∥∥∥∇fi (x)

npi
−∇f (x∗)

∥∥∥∥2

≤ 4LDf (x , x∗) + 2σ2. (42)

where

σ2 def
=

n∑
i=1

pi

∥∥∥∥∇fi (x∗)npi
−∇f (x∗)

∥∥∥∥2

(43)

is the weighted variance of the stochastic gradients at the optimum.

Remark: Lemma 11 is a generalization of in Gower et al 2019 [7,
Lemma 2.4], who considered the R ≡ 0 case.
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Proof of Lemma 11

Expectations are with respect to the random choice of i : chosen uniformly at random
from {1, 2, . . . , n}. Then

n∑
i=1

pi

∥∥∥∥∇fi (x)

npi
−∇f (x∗)

∥∥∥∥2

=
n∑

i=1

pi

∥∥∥∥∇fi (x)

npi
−
∇fi (x∗)

npi
+
∇fi (x∗)

npi
−∇f (x∗)

∥∥∥∥2

(21)

≤
n∑

i=1

pi

(
2

∥∥∥∥∇fi (x)

npi
−
∇fi (x∗)

npi

∥∥∥∥2

+ 2

∥∥∥∥∇fi (x∗)npi
−∇f (x∗)

∥∥∥∥2
)

(40)+(43)

≤ 4

(
max

i

Li

npi

)
Df (x , x∗) + 2σ2.
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Complexity of SGD-NS

A direct consequence of Theorem 2:

Corollary 12
Assume that

I The problem min f + R has a unique solution (Assumption 3)

I f is µ-quasi strongly convex (Assumption 4)

I fi are convex and Li -smooth (Assumption 6)

Then SGD-NS with stepsize 0 < γ ≤ 1
2L , where L = maxi

Li

npi
, satisfies

E
[∥∥xk − x∗

∥∥2
]
≤ (1− γµ)k

∥∥x0 − x∗
∥∥2

+
2γσ2

µ
. (44)
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Exercises

Both exercises below consider the σ2 = 0 case. In this case, SGD-NS is a
variance-reduced method (see Def 1).

Exercise 3
Prove that if σ2 = 0 (i.e., if ∇fi (x

∗)
pi

=
∇fj (x

∗)
pj

for all i , j), then the upper

bound in (30) can be improved by a factor of 2:

n∑
i=1

pi

∥∥∥∥∇fi (x)

npi
−∇f (x∗)

∥∥∥∥2

≤ 2LDf (x , x∗). (45)

Exercise 4
Show that if σ2 = 0, then Corollary 12 has the following stronger form:
SGD-NS allows for the larger stepsize 0 < γ ≤ 1

L , and satisfies

E
[∥∥xk − x∗

∥∥2
]
≤ (1− γµ)k

∥∥x0 − x∗
∥∥2
. (46)
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Importance Sampling: SGD-IS
In Theorem 12, the fastest rate is obtained when we allow the stepsize to
be the largest. We can optimize the stepsize by choosing probabilities
which mininimze L = maxi

Li

npi
:

min
p1,...,pn

max
i

Li
npi

.

This leads to the importance sampling probabilities

pi =
Li∑
j Lj

⇒ L =

∑
i Li
n

def
= L̄.

Algorithm 5 SGD-IS

1: Parameters: learning rate γ > 0, starting point x0 ∈ Rd

2: for k = 0, 1, 2, . . . do
3: Sample ik = i ∈ {1, 2, . . . , n} with probability pi = Li∑

j Lj

4: gk = ∇fi (x
k )

npi
obtain a stochastic gradient

5: xk+1 = proxγR(xk − γgk)
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Comparing GD and SGD-IS in the σ2 = 0 Case
Let us compare the convergence of GD and SGD-IS:

I GD
I By Corollary 3, using stepsize γ = 1

L
, GD achieves iteration complexity

k ≥ L

µ
log

1

ε
⇒

∥∥∥xk − x∗
∥∥∥2

≤ ε
∥∥∥x0 − x∗

∥∥∥2

I Cost of 1 iteration: n gradient evaluations

I Total complexity: Õ
(

nL
µ

)
I SGD-IS

I By Corollary 12, using the importance sampling probabilities
pi = Li∑

j Lj
, stepsize γ = 1

L = 1
L̄

, SGD-IS achieves iteration complexity

k ≥ L̄

µ
log

1

ε
⇒ E

[∥∥∥xk − x∗
∥∥∥2
]
≤ ε

∥∥∥x0 − x∗
∥∥∥2

I Cost of 1 iteration: 1 gradient evaluation

I Total complexity: Õ
(

L̄
µ

)
Conclusion: Note that nL ≤

∑n
i=1 Li = nL̄, and this inequality can be

tight, so that L = L̄. So, SGD-IS can be as much as n times faster
than GD!
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A Guided Walk Through the ZOO of
Stochastic Gradient Descent Methods

Peter Richtárik

Part 6: SGD via Stochastic Reformulation

Based on:

[7] R.M. Gower, N. Loizou, X. Qian, A. Sailanbayev, E. Shulgin, and P.R.
SGD: General Analysis and Improved Rates, ICML 2019
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Summary
I SGD-SR: a vast generalization of the previous methods, one that

includes GD, SGD-US and SGD-NS as special cases.
I Sheds light on minibatching and gives a formula for the optimal

minibatch size
I Smoothness (GD), average smoothness (SGD-US), and weighted

smoothness (SGD-NS) get generalized to expected smoothness.
I See also Robert M. Gower’s talk at ICCOPT 2019: R.M. Gower,

Expected smoothness is the key to understanding the mini-batch

complexity of stochastic gradient methods, Location: H 0104, Symposium:

Recent Advancements in Optimization Methods for Machine Learning

(Part IV), Session: Wednesday 16:00–17:15, Talk time: 16:25–16:50
I Development based on the idea of stochastic reformulation of

deterministic problems
I idea pioneered by Takáč and R [22] in the context of stochastic

quadratic optimization problems / linear feasibility
I generalized to convex feasibility by Necoara, R and Patrascu [17]

I solved an open problem related to the efficiency of extrapolated
parallel projection methods

I extended to finite-sum problems in the context of variance reduction
(“controlled” stochastic reformulation) by Gower, R and Bach [6]

I adapted to non-variance reduced SGD methods by Gower et al [7]
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A Guided Walk Through the ZOO of
Stochastic Gradient Descent Methods

Peter Richtárik

Part 7: Shifted SGD

Based on:

[5] E. Gorbunov, F. Hanzely and P.R., A Unified Theory of SGD: Variance
Reduction, Sampling, Quantization and Coordinate Descent, arXiv1905.11261, 2019

[9] F. Hanzely and P.R., One method to rule them all: variance reduction for data,
parameters and many new methods, arXiv:1905.11266, 2019
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Motivation
As before, we consider the regularized finite-sum problem

min
x∈Rd

1

n

n∑
i=1

fi (x)︸ ︷︷ ︸
f (x)

+R(x). (47)

I Recall that SGD does not converge to the solution x∗ if D1 > 0 or
D2 > 0, i.e., if it is not a variance reduced method.

I In particular, SGD-US does not converge to the solution x∗ if the
variance of the stochastic gradients at the optimum (“gradient
noise” for short), i.e.,

σ2 def
=

1

n

n∑
i=1

‖∇fi (x∗)−∇f (x∗)‖2
,

is positive.
I Main idea: Can we force σ2 to be zero via some simple

algebraic trick right at the start?
I Answer: yes!
I This leads to the SGD-SHIFT method [5, 9]
I The method can’t be implemented!
I The method gives intuition into what variance reduction is about! 72 / 123



Reformulation by Shifting the Functions: the Idea
1. Define the shifted functions

φi (x)
def
= fi (x)− 〈ai , x〉, ∀i = 1, 2, . . . , n,

where ai ∈ Rd are some vectors to be determined.
I If fi is convex and Li -smooth, so is φi

I The gradients are shifted: ∇φi (x) = ∇fi (x)− ai
2. We now want to and apply SGD-US to a reformulated problem:

min
x∈Rd

1

n

n∑
i=1

fi (x) + R(x) ⇔ min
x∈Rd

1

n

n∑
i=1

φi (x) + R(x)

3. In order for the new problem to be equivalent to the original one,

we need to make sure that f
def
= 1

n

∑
i fi = 1

n

∑
i φi

def
= φ. This is

achieved if the aggregate shift is zero:
∑n

i=1 ai = 0.
4. In order to get σ2 = 0, we want ∇φi (x∗) = ∇φ(x∗) for all i :

∇fi (x∗)− ai = 1
n

∑
j(∇fj(x∗)− aj), ∀i

Solving for ai , we get

ai = ∇fi (x∗)− 1
n

∑
i ∇fj(x∗) = ∇fi (x∗)−∇f (x∗).
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Reformulation by Shifting the Functions: Summary

So, instead of (60), we are solving the shifted problem

min
x∈Rd

1

n

n∑
i=1

φi (x) + R(x) (48)

where the individual functions are

φi (x)
def
= ∇fi (x)−〈∇fi (x∗)−∇f (x∗)︸ ︷︷ ︸

ai

, x〉 (49)

and the stochastic gradient is given by

∇φi (x) = ∇fi (x)−∇fi (x∗)+∇f (x∗)
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Shifted SGD
We now apply SGD-US to the shifted problem (48)+(49):

xk+1 = proxγR
(
xk − γ∇φi (xk)

)
where i is chosen uniformly at random from {1, 2, . . . , n}.

Writing this method in the notation of the original problem (60), we get
the SGD-SHIFT method:

Algorithm 6 SGD-SHIFT

1: Parameters: learning rate γ > 0, starting point x0 ∈ Rd , gradients
at the optimum ∇f1(x∗), . . . ,∇fn(x∗)

2: Set ∇f (x∗) = 1
n

∑
i ∇fi (x∗)

3: for k = 0, 1, 2, . . . do
4: Sample ik = i ∈ {1, 2, . . . , n} with probability 1

n
5: gk = ∇fi (xk)−∇fi (x∗) +∇f (x∗)
6: xk+1 = proxγR(xk − γgk)

SGD-SHIFT is utterly impractical since we do not know the optimal
gradients ∇f1(x∗), . . . ,∇fn(x∗)!
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Shifted SGD: Theory

Since by design σ2 = 0 for the reformulated problem, it follows from
Theorem 2 that the random iterates of SGD-SHIFT converge to x∗, at a
linear rate.

Applying Exercise 2 in combination with Corollary 8, we get the following
result:

Corollary 13
Assume that

I The problem min f + R has a unique solution (Assumption 3)

I f is µ-quasi strongly convex (Assumption 4)

I fi are convex and Li -smooth (Assumption 6)

SGD-SHIFT allows for the larger stepsize 0 < γ ≤ 1
maxi Li

, and its iterates
converge as

E
[∥∥xk − x∗

∥∥2
]
≤ (1− γµ)k

∥∥x0 − x∗
∥∥2
. (50)
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SGD-SHIFT vs GD: Understanding What Variance Reduced
Methods Do

I The gradient estimator of SGD-SHIFT utilizes a fixed and
impossible-to-evaluate shift:

∇φi (xk) = ∇fi (xk)−∇fi (x∗)+∇f (x∗)

I The gradient estimator of GD has a similar structure, but has a
variable and costly-to-evaluate shift:

∇f (xk) = ∇fi (xk)−∇fi (xk)+∇f (xk) (51)

Insight: Variance reduced methods (such as SVRG, S2GD,
SAGA, L-SVRG, MISO, Finito, JacSketch) achieve similar
effect (convergence to x∗ as opposed to just a neighbour-
hood) by doing something in between of what GD and
SGD-SHIFT do. They use the information accumulated
across the iterates to progressively learn the gradients
at the optimum!
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Part 8: Loopless SVRG

Based on:

[10] T. Hofmann, A. Lucchi, S. Lacoste-Julien, and B. McWilliams. Variance reduced
stochastic gradient descent with neighbors. NIPS 2015

[15] D. Kovalev, S. Horváth and P. R. Don’t jump through hoops and remove those
loops: SVRG and Katyusha are better without the outer loop, arXiv:1901.08689,

2019
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Motivation
I So far we have seen a few variance-reduced SGD methods, all with

serious issues:
I GD: this methods needs to perform n gradient computations in each

iteration, which is inefficient.
I SGD-US, SGD-SR: in the special lucky case when σ2 = 0 (e.g., in the

“over-parameterized” regime when ∇fi (x∗) = 0 for all i)
I SGD-SHIFT: this method is practically not implementable.

I We will now describe and analyze the first variance-reduced method
which is both efficient and implementable:

Loopless SVRG (L-SVRG)

I L-SVRG was independently developed by Hofmann et al [10] (earlier)
and Kovalev & R [15].
I The name L-SVRG was coined in [15]
I Here we follow the general analysis in [5] (Theorem 2) to recover the

result from [15]

I L-SVRG is a “loopless” variant of the famous SVRG method of
Johnson and Zhang [13]. See also S2GD [14] which appeared in the
same year (2013).
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Loopless SVRG: the Algorithm

Using interpretation (51) of GD, L-SVRG can be interpreted as “lazy”
gradient descent

Algorithm 7 Loopless SVRG (L-SVRG) [15]

1: Parameters: learning rate γ > 0, starting point x0 ∈ Rd , probability
0 < p ≤ 1

2: w0 = x0 (initialize the reference point)
3: for k = 0, 1, 2, . . . do
4: Sample ik = i ∈ {1, 2, . . . , n} with probability 1

n
5: gk = ∇fi (xk)−∇fi (wk) +∇f (wk)
6: xk+1 = proxγR(xk − γgk)
7: Update the reference point:

wk+1 =

{
xk with probability p
wk with probability 1− p

Exercise 5
Show that the estimator is unbiased E

[
gk | xk ,wk

]
= ∇f (xk). 80 / 123



Cost per Iteration
In each iteration, one has to compute

I 1 gradient: ∇fi (xk) (always)

I n gradients: ∇f (wk) = 1
n

∑
i ∇fi (wk) (with probability p )

I 1 gradients: ∇fi (wk) (with probability 1− p)

So, the expected # of gradient evaluations per 1 iteration of L-SVRG is:

Cost = 1 + pn + (1− p)1

= 2 + p(n − 1).

I A practical (and theoretically optimal) choice is p = 1
n , for which

Cost ≤ 3 = O(1). (52)

I Another good (and theoretically optimal) choice is p = µ
Lmax

, for
which

Cost = O
(

1 +
nµ

Lmax

)
. (53)
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Key Lemma
We now show that L-SVRG satisfies Assumption 1.

Lemma 14 (Lemmas 4.2–4.3 from [15] extended to prox setup)
Let Assumptions 6 and 3 be satisfied. Then

E
[∥∥gk −∇f (x∗)

∥∥2 | xk
]
≤ 4LmaxDf (xk , x∗) + 2σ2

k (54)

and
E
[
σ2
k+1 | xk

]
≤ (1− p)σ2

k + 2LmaxpDf (xk , x∗), (55)

where

σ2
k

def
=

1

n

n∑
i=1

∥∥∇fi (wk)−∇fi (x∗)
∥∥2
. (56)

I So, Assumption 1 is satisfied with

A = 2Lmax, B = 2, D1 = 0, σk = (56), ρ = p, C = Lp, D2 = 0.

I Since D1 = D2 = 0, L-SVRG is a variance-reduced variant of SGD
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Convergence of L-SVRG
Corollary 15 (Convergence of L-SVRG)
Let the following assumptions be satisfied:

I Assumptions 3 (unique solution),

I Assumption 4 (µ-quasi strong convexity) and

I Assumption 6 (convexity and Li -smoothness of fi ).

Then L-SVRG with γ = 1
6Lmax

satisfies

E
[
V k
]
≤
(

1−min

{
µ

6Lmax
,
p

2

})k

V 0, (57)

where

V k (18)
=
∥∥xk − x∗

∥∥2
+Mγ2σ2

k

(56)
=
∥∥xk − x∗

∥∥2
+

1

9L2
maxpn

n∑
i=1

∥∥∇fi (wk)−∇fi (x∗)
∥∥2

Exercise 6
Formally perform the proof of Corollary 15. Hint: Apply Theorem 2 to
Algorithm 7 with M = 4

p .
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Total Complexity

Number of iterations: In view of Corollary 15, we have

k ≥ max

{
6Lmax

µ
,

2

p

}
log

1

ε
⇒ E

[
V k
]
≤ εV 0.

Cost of 1 iteration:

I If we choose p = 1
n , in view of (52) the expected cost of 1 iteration

is Cost ≤ 3 = O(1). Hence, the total complexity of L-SVRG is

Total complexity = O
(

max

{
Lmax

µ
, n

}
log

1

ε

)
(58)

I If we choose p = µ
Lmax

, in view of (53) the expected cost of 1

iteration is Cost = O
(

1 + nµ
Lmax

)
. Hence, the total complexity of

L-SVRG is

Total complexity = O
(

max

{
Lmax

µ
, n

}
log

1

ε

)
(59)
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Comparison of Total Complexities

Let us compare the complexities of the variance-reduced methods L-SVRG
with SGD-US:

Method GD
SGD-US

for σ2 = 0
L-SVRG

p = O( 1
n ) or p = O( µ

Lmax
)

Total complexity nL
µ log 1

ε
Lmax

µ log 1
ε max

{
Lmax

µ , n
}

log 1
ε

I Big data regime: n ≥ Lmax

µ

I L-SVRG is slower than SGD-US
I But one needs to be very lucky for σ2 = 0 to be the case!
I If σ2 > 0, then SGD-US converges to a neighbourhood of the solution

only!

I Small data regime: n ≤ Lmax

µ

I L-SVRG and SGD-US are equally fast
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Insight

Insight: When we are (very) lucky to be in the σ2 = 0
regime, variance reduction is not needed in the first place,
and SGD-US is better than L-SVRG in the big data regime.
They are the same in the small data regime. However, when
variance reduction is desirable (σ2 > 0), then L-SVRG

shines: it delivers on its promise and is an efficient
method which converges as fast (in the small data
regime) or almost as fast (in the big data regime) to
x∗ as if variance reduction was needed at all.
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Proof of Lemma 14
All expectations in the first part of the proof are conditioned on xk and wk . Using the

definition of gk , we get:

E

[∥∥∥gk −∇f (x∗)
∥∥∥2
]

L-SVRG
= E

[∥∥∥∇fi (xk )−∇fi (x∗) +∇fi (x∗) −∇fi (wk ) +∇f (wk ) −∇f (x∗)2
∥∥∥]

(21)
≤ 2E

[∥∥∥∇fi (xk )−∇fi (x∗)
∥∥∥2
]

+2E

[∥∥∥∇fi (x∗) −∇fi (wk ) − E
[
∇fi (x∗) −∇fi (wk )

]∥∥∥2
]

(27)+(23)
≤ 2E

[
2Li Dfi

(xk , x∗)
]

+2E

[∥∥∥∇fi (wk ) −∇fi (x∗)
∥∥∥2
]

≤ 4LmaxDf (xk , x∗) + 2σ2
k .

The second recursion can be obtained directly from the definition (56) of σ2
k and the

update rule for wk :

E
[
σ2
k+1 | x

k
]

= (1− p)σ2
k + p

1

n

n∑
i=1

∥∥∥∇fi (xk )−∇fi (x∗)
∥∥∥2

(27)

≤ (1− p)σ2
k + p

1

n

n∑
i=1

2LiDfi (x
k , x∗)

= (1− p)σ2
k + 2LmaxpDf (xk , x∗).
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Extensions

I Arbitrary sampling: L-SVRG with arbitrary sampling (i.e., a subset
of {1, 2, . . . , n} can be sampled to form gk in each step, following
an arbitrary distribution) was developed and analyzed by Qu, Qian
and R [21].

I Acceleration: accelerated variant (L-Katyusha) was also developed
in [21]. Katyusha was developed by Alen-Zhu [2].

I Beyond strong convexity: An analysis in the convex and smooth
nonconvex can be found in [21].
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A Guided Walk Through the ZOO of
Stochastic Gradient Descent Methods

Peter Richtárik

Part 10: Distributed Optimization with
Compressed Communication via DIANA

Based on:

[16] K. Mishchenko, E. Gorbunov, M. Takáč and P. R. Distributed Learning with
Compressed Gradient Differences, arXiv:1901.09269, 2019

[12] S. Horváth, D. Kovalev, K. Mishchenko, P. R. and S. Stich, Stochastic
Distributed Learning with Gradient Quantization and Variance Reduction,

arXiv:1904.05115, 2019
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Motivation

We are still considering the regularized finite-sum problem

min
x∈Rd

1

n

n∑
i=1

fi (x)︸ ︷︷ ︸
f (x)

+R(x). (60)

We now move onto distributed optimization:
I We utilize a distributed compute system because:

I f is described by too much data to be stored on a singe computer,
and hence the data (i.e., functions) need to be stored on different
computers of distributed system (e.g., cluster, supercomputer)

I a single computer is not powerful enough for the task at hand and
we have access to multiple computers.

I There are n machines which can work in parallel.

I Machine i contains information about:
I fi (this function can in turn be very complex)
I regularizer R
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Distributed Gradient Descent
I We want all machines to be utilized, so in each iteration we want

to access all n functions f1, . . . , fn
I Ideally we would want to implement GD:

1. Each machine computes ∇fi (xk)
2. These gradients are sent to a parameter server, which aggregates

(i.e., averages) them and broadcasts the average

∇f (xk) =
1

n

n∑
i=1

∇fi (xk)

back to the nodes
3. Each node performs the prox gradient step to obtain xk+1:

xk+1 = proxγR(xk − γ∇f (xk))

4. The process is repeated

I Key Issue: Communication of the (often very high
dimensional) gradient ∇fi (xk) ∈ Rd from node i to the
parameter server over a network is very slow, and forms the
bottleneck.
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Gradient Compression
A popular solution to the communication bottleneck is gradient
compression:

I The idea is for each node/machine to replace ∇fi (xk) ∈ Rd by
C(∇fi (xk)) ∈ Rd , where

C : Rd 7→ Rd

is some (often randomized) compression operator.

I Trade-off between accuracy and compression: We want the
compressed gradient to be small in size, so that it is easy to
communicate. But the more we compress, the less accurate it will
be, which will adversely affect the algorithm.

I Intuition behind compression vs convergence:
I No compression: recovers gradient decent (GD)
I A bit of compression: may lead to improvement in the overall

complexity
I A lot of compression: will lead to a worse performance than no

compression.
I Too much compression: will break the method altogether

(divergence).
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Compression Operators

Definition 16 (Compression Operator)
We say that a randomized map C : Rd → Rd is an ω-compression
operator (ω > 0) if for all x ∈ Rd it satisfies

E [C(x)] = x , E
[
‖C(x)− x‖2

]
≤ ω ‖x‖2

. (61)

We write C ∈ B(ω).

Examples:

I Random sparsification

I Random dithering

I Natural compression [11]

I Natural dithering [11] (exponentially better than random dithering)
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A Naive Variant of Gradient Descent with Compression

Algorithm 8 GD with Compression (GD-compress)

1: Parameters: learning rate γ > 0, starting point x0 ∈ Rd , compression
operator C

2: for k = 0, 1, 2, . . . do
3: for all nodes i ∈ {1, 2, . . . , n} in parallel do
4: Compute local gradient ∇fi (xk)
5: Compress local gradient gk

i = C(∇fi (xk))
6: Send gk

i to parameter server
7: Receive the aggregate gk = 1

n

∑n
i=1 g

k
i

8: xk+1 = proxγR(xk − γgk)

This method is naive since:

I It is not known to converge in the R 6= 0 case

I We have turned GD into SGD, and hence have to live with
convergence to a neighbourhood of the solution
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The DIANA Algorithm
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DIANA: A Method That Fixes These Issues

DIANA (Mishchenko et al [16]):

I is the first method which fixes the issues of the naive method.

I is a variance-reduction strategy for tackling the variance
introduced by the compression operators

I maintains local estimates {hki } of the gradients at the optimum
(∇fi (x∗)) and compresses the difference between the local
gradient and hki
I Since hk

i → ∇fi (x∗) and ∇fi (xk)→ ∇fi (x∗) (which needs to be
proved), then the gradient differences converge to zero

∇fi (xk)− hk
i → 0.

I As a result, the compression introduces less and less variance,
I And hence DIANA is able to reduce the variance introduced by

compression.
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The Variance Reduction Technique Behind DIANA

Method Alg # Gradient Estimator gk =

GD Alg 2 ∇fi (xk)−∇fi (xk) +∇f (xk)

SGD-SHIFT Alg 6 ∇fi (xk)−∇fi (x∗) +∇f (x∗)

L-SVRG Alg 7 ∇fi (xk)−∇fi (wk) +∇f (wk)

DIANA (1 node) Alg 9 C(∇f (xk)− hk) + hk

DIANA (n nodes) Alg 9 1
n

n∑
i=1

C(∇fi (xk)− hki ) + hki
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DIANA: the Algorithm

Algorithm 9 DIANA [16, 12]

1: Parameters: learning rates α > 0 and γ > 0, initial iterate x0 ∈ Rd ;
initial vectors h0

1, . . . , h
0
n ∈ Rd (stored on the nodes)

2: Initialize: h0 = 1
n

∑n
i=1 h

0
i (stored on the master)

3: for k = 0, 1, . . . do
4: Broadcast xk to all workers
5: for i = 1, . . . , n in parallel do
6: Compute ∇fi (xk)
7: ∆k

i = ∇fi (xk)− hki
8: Compress ∆̂k

i = C(∆k
i )

9: hk+1
i = hki + α∆̂k

i

10: ĝk
i = hki + ∆̂k

i

11: Aggregate received messages ∆̂k = 1
n

∑n
i=1 ∆̂k

i

12: Compute gradient estimator gk = 1
n

∑n
i=1 ĝ

k
i = hk + ∆̂k

13: Take proximal SGD step xk+1 = proxγR
(
xk − γgk

)
14: hk+1 = 1

n

∑n
i=1 h

k+1
i = hk + α∆̂k
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Key Lemma

Lemma 17 (Lemma 1 and consequence of Lemma 2 from [12])
Suppose that α ≤ 1

1+ω . For all iterations k ≥ 0 of Algorithm 9 it holds

E
[
gk | xk

]
= ∇f (xk ), (62)

E

[∥∥∥gk −∇f (x∗)
∥∥∥2
| xk

]
≤

(
1 +

2ω

n

)
1

n

n∑
i=1

∥∥∥∇fi (xk )−∇fi (x∗)
∥∥∥2

(63)

+
2ωσ2

k

n
, (64)

E
[
σ2
k+1 | x

k
]
≤ (1− α)σ2

k +
α

n

n∑
i=1

∥∥∥∇fi (xk )−∇fi (x∗)
∥∥∥2
. (65)

where σ2
k = 1

n

n∑
i=1

∥∥hki −∇fi (x∗)∥∥2
.

Bounding further 1
n

∑n
i=1

∥∥∇fi (xk)−∇fi (x∗)
∥∥2 ≤ 2LmaxDf (xk , x∗) in the

above lemma, we see that Assumption 1 holds. So, Theorem 2 applies.
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Convergence of DIANA

Corollary 18
Assume that

I fi is convex and Li -smooth for all i ∈ [n]

I and f is µ-quasi strongly convex,

If the stepsizes satisfy α ≤ 1
ω+1 , γ ≤ 1

(1+ 2ω
n )Lmax+MLmaxα

, where M > 2ω
nα ,

then the iterates of DIANA satisfy

E
[
V k
]
≤ max

{
(1− γµ)k ,

(
1 +

2ω

nM
− α

)k
}
V 0, (66)

where the Lyapunov function V k is defined by

V k def
=
∥∥xk − x∗

∥∥2
+ Mγ2σ2

k .
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Understanding the Rate

For the particular choice

α =
1

ω + 1
, M =

4ω(ω + 1)

n
, γ =

1(
1 + 6ω

n

)
Lmax

,

the iteration complexity of DIANA is

max

{
1

γµ
,

1

α− 2ω
nM

}
log

1

ε
= max

{
κ+ κ

6ω

n
, 2(ω + 1)

}
log

1

ε
(67)

where κ
def
= Lmax

µ .

Key Insight: As long as ω = O(min{n, κ}), the iteration
complexity of DIANA is the same as that of GD: O

(
κ log 1

ε

)
.

However, by allowing for compression, we communicate less,
and so the overall complexity can improve.
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Examples of Compression Operators
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Random Sparsification

Definition 19 (Random sparsification)
Fix r ∈ {1, 2, . . . , d} and let ξ ∈ Rd be a (uniformly distributed) random
binary vector with r nonzero entries. The random sparsification operator
is given by

C(x) =
d

r
(ξ � x) ,

where � denotes the Hadamard (entry-wise) product.

Remarks:

I C(x) has at most r nonzero entries (if x was dense, then exactly r).

I Since ξi = 1 with probability r
d and zero otherwise,

E [C(x)i ] =
d

r
E [(ξ � x)i ] =

d

r

( r
d

1 · xi +
(

1− r

d

)
0 · xi

)
= xi ,

and hence C is unbiased.

I It can be shown that C ∈ B(ω) for ω = d
r − 1 (Stich et al [26]).
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Random Dithering

Definition 20 (Random dithering)
Fix p ∈ [1,∞] and number of levels s ∈ {1, 2, . . . }. The random
dithering operator C : Rd → Rd is defined as

C(x) = sign(x) · ‖x‖p ·
1

s
·
⌊
s
|x |
‖x‖p

+ ξ

⌋
,

where sign(x) ∈ Rd and |x | ∈ Rd are applied entry-wise, ξ ∈ Rd is a
random vector with independent entries uniformly distributed on [0, 1],

and ‖x‖p
def
= (
∑

i |xi |p)1/p is the Lp norm.

Remarks:

I For p = 2 used in the QSGD method of Alistarh et al [1]

I For p =∞ and s = 1 used (no theory) in the Terngrad method of
Wen et al [28]

I For p ≥ 1 and s = 1 studied in [16]
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Properties of Random Dithering
Lemma 21 (Alistarh et al [1] for p = 2; Horváth et al [12] for
general p)
Random dithering operator C is unbiased (i.e., E [C(x)] = x for all x),
and for any fixed x ∈ Rd , it satisfies (61) with

ω(x)
def
= 2 +

‖x‖1‖x‖p
s‖x‖2

2

,

which is a decreasing function in p. Moreover, C ∈ B(ω) for

ω = O
(
d1/p + d1/2

s

)
for all p ≥ 1 and s ≥ 1.

Communication:
I For p = 2, the expected density of the compressed vector is [1]

E [‖C(x)‖0] = O(s(s +
√
d))

I Encoding a nonzero coordinate of C(x) requires O(log s) bits.
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Natural Compression

I Natural compression Cnat will be applied element-wise to x :
(Cnat(x))i = Cnat(xi ).

I Natural compression performs a randomized rounding of its input
t ∈ R to one of the two closest integer powers of 2.

I Given nonzero t, let α ∈ R be such that |t| = 2α (i.e., α = log2 |t|).
Then

2bαc ≤ |t| = 2α ≤ 2dαe (68)

and we round t to either sign(t)2bαc, or to sign(t)2dαe.

I When t = 0, we set Cnat(0) = 0.

I The probabilities are chosen so that Cnat(t) is an unbiased
estimator of t, i.e., E [Cnat(t)] = t for all t.

I If t is an integer power of 2, then Cnat will leave t unchanged.

Lemma 22 (Horváth et al [11])
Cnat ∈ B( 1

8 ).
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Natural Compression: Examples

Figure: An illustration of natural compression applied to t = 2.5: Cnat(2.5) = 2
with probability 4−2.5

2
= 0.75, and Cnat(2.5) = 4 with probability 2.5−2

2
= 0.25.

This choice of probabilities ensures that the compression operator is unbiased,
i.e., E [Cnat(t)] = t for all t.

Example 23

I t = −2.75 will be rounded to either −4 or −2 (since
−22 ≤ −2.75 ≤ −21)

I t = 0.75 will be rounded to either 1
2 or 1 (since 2−1 ≤ 0.75 ≤ 20)
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Implementation of Natural Compression I
I Performing natural compression of a real number in a binary floating

point format is computationally cheap.

I Excluding the randomization step, Cnat amounts to simply
dispensing off the mantissa in the binary representation.
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Implementation of Natural Compression II

Binary32

I The most common computer format for real numbers, binary32
(resp. binary64) of the IEEE 754 standard, represents each
number with 32 (resp. 64) bits, where the first bit represents the
sign, 8 (resp. 11) bits are used for the exponent, and the remaining
23 (resp. 52) bits are used for the mantissa.

I A scalar t ∈ R is represented in the form
(s, e7, e6, . . . , e0,m1,m2, . . . ,m23), where s, ei ,mj ∈ {0, 1} are bits,
via the relationship

t = (−1)s×2e−127×(1+m), e =
7∑

i=0

ei2
i , m =

23∑
j=1

mj2
−j , (69)

where s is the sign, e is the exponent and m is the mantissa.
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Implementation of Natural Compression III

Example 24
A binary32 representation of t = −2.75 is visualized below. In this case,
s = 1, e7 = 1, m2 = m3 = 1 and hence

t = (−1)s × 2e−127 × (1 + m) = −1× 2× (1 + 2−2 + 2−3) = −2.75.

Figure: IEEE 754 single-precision binary floating-point format: binary32.

I It is clear from (69) that 0 ≤ m < 1, and hence
2e−127 ≤ |t| < 2e−126 (compare this with (68)). Moreover,

p(t) = 2e−126−|t|
2e−127 = 2− |t|2127−e = 1−m.
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Implementation of Natural Compression IV
I Hence, natural compression of t represented as binary32 is

given as follows:

Cnat(t) =

{
(−1)s × 2e−127, with probability 1−m,

(−1)s × 2e−126, with probability m.

I Observe that (−1)s × 2e−127 is obtained from t by setting the
mantissa m to zero, and keeping both the sign s and exponent
e unchanged.

I Similarly, (−1)s × 2e−126 is obtained from t by setting the
mantissa m to zero, keeping the sign s, and increasing the
exponent by one, which amounts to a simple shift of the bits
forming the exponent to the left by one spot.

I Hence, both values can be computed from t essentially without
any computation.
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Implementation of Natural Compression V

Communication savings

I In case of binary32, the output Cnat(t) of natural compression is
encoded using the 8 bits in the exponent and an extra bit for the
sign. This is 3.56× less communication.

I In case of binary64, we only need 11 bits for the exponent and 1 bit
for the sign, and this is 5.82× less communication.
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A Guided Walk Through the ZOO of
Stochastic Gradient Descent Methods

Peter Richtárik

Part 9: SEGA

Based on:

[8] F. Hanzely, K. Mishchenko and P. R.
SEGA: Variance reduction via gradient sketching, NeurIPS 2018

[5] E. Gorbunov, F. Hanzely and P.R., A Unified Theory of SGD: Variance
Reduction, Sampling, Quantization and Coordinate Descent, arXiv1905.11261, 2019
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The Setup

Consider solving the problem

min
x∈Rd

f (x) + R(x)

in situations when

I the dimension d is very large, and

I we only have access to random linear transformations of the
gradient of f :

S>∇f (xk), S is a random matrix
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About SEGA

I The first method designed to work in this regime

I SEGA is a variance reduction strategy for the variance implied by
the random measurement process.

I As other variance-reduced methods we have seen, SEGA also
maintains a sequence of auxiliary iterates hk converging to ∇f (x∗)

I Under the typical assumptions of this course (e.g., smoothness and
strong convexity), SEGA can solve the problem to optimality, at
a linear rate.

I When specialized to coordinate sketches, SEGA enjoys the same
complexity bounds (up to small constants) as state-of-the-art
coordinate descent methods

I It’s the first coordinate descent type method which works with
any R, and not just (block) separable R

I Developed by Hanzely, Mishchenko and R [8]
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Go to External Slides
(but there won’t be time for this)

116 / 123



Bibliography I

[1] Dan Alistarh, Demjan Grubic, Jerry Li, Ryota Tomioka, and Milan Vojnovic.

QSGD: Communication-efficient SGD via gradient quantization and encoding.

In Advances in Neural Information Processing Systems, pages 1709–1720, 2017.

[2] Zeyuan Allen-Zhu.

Katyusha: The first direct acceleration of stochastic gradient methods.

In Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of
Computing, pages 1200–1205. ACM, 2017.

[3] Amir Beck.

First order methods in optimization.

MOS-SIAM Series on Optimization, 2017.

[4] El Houcine Bergou, Eduard Gorbunov, and Peter Richtárik.

Stochastic three points method for unconstrained smooth minimization.

arXiv preprint arXiv:1902.03591, 2019.

[5] Eduard Gorbunov, Filip Hanzely, and Peter Richtárik.
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