KAUST

  • DSA 008, Introduction to Machine Learning (Fall 2025)
  • CS 332, Federated Learning (Fall 2025)
  • CS 331, Stochastic Gradient Descent Methods (Fall 2025)
  • CS 398, CS Graduate Seminar (Fall 2025)
  • DSA 211, Introduction to Optimization (Summer 2025)
  • CS 331, Stochastic Gradient Descent Methods (Spring 2025)
  • CS 331, Stochastic Proximal Point Methods (Spring 2024)
  • DSA 006, Introduction to Machine Learning (Summer 2023)
  • CS 332, Federated Learning (Spring 2023)
  • DSA 008, Introduction to Optimization (Fall 2022)
  • CS 331, Stochastic Gradient Descent Methods (Fall 2022)
  • CS 332, Federated Learning (Spring 2022 - Piazza)
  • CS 331, Stochastic Gradient Descent Methods (Fall 2021 - Piazza)
  • CS 332, Federated Learning (Spring 2021 - Piazza)
  • CS 331, Stochastic Gradient Descent Methods (Fall 2020 - Piazza)
  • CS 390T, Special Topics in Federated Learning (Spring 2020 - Piazza)
  • CS 394D, Contemporary Topics in Machine Learning (Spring 2018, Spring 2019 - Piazza)
  • CS 390FF, Big Data Optimization (Fall 2017, Fall 2018, Fall 2019 - Piazza)

University of Edinburgh

  • Modern Optimization Methods for Big Data Problems (Spring 2016, Spring 2017)
  • Game Theory (Fall 2010, 2011, 2012)
  • Discrete Programming and Game Theory (Fall 2010, 2011, 2012)
  • Optimization Methods in Finance (Spring 2012, 2013, 2014, 2015)
  • Deterministic Optimization Methods in Finance (Spring 2011, 2012, 2013, 2014, 2015)

External (e.g., Summer / Winter Doctoral Schools)